
D-AiB6 421 AUTOMATED PROGRAM RECOGNITION(U) MASSACHUJSETTS INST OF j/3
TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB L M WILLS

UNCLASSIFIED FS8A-T-8N8845K824F/G 12/5 NL

I EhEEEEEohmhsh

L. 1j. Q

L6II 18.
1I8

1111.25 1111 I4 111 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

UfLE copIy
4 echnical Report 904

00 Automated
Pro gram

Recognition

Linda M. Wills'
I

MIT Artificial Intelligence Laboratory

Qvf ~. %~~V'~~~ X ~ .'~:*

UNCLASSIFIED
51-J T C ASV IC ATIO Or 'r-IS PAGE to%. Doe Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORTt~umSEQ2. GOVT ACCESSION NO. 1. IRECIPIENT'S CATALOG NdUMI6E4

4 TIE (nd Sbt#10)S. TYPE or REPORT & PEIOD COVENCO

Automated Program RecognitionTehia Rpo.r

S. PERVORM116r ONG. REPORT NdUNeR;

7. AujTnO~fo, 6. CONTRACT ON GRANT NUMVIC(sI

ONR N00014-85-K-0214
Lind M. illsNSF DCR-8117633

9. PEIRrORMING ORGANIZATION NAMIE AMC ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK'

Artificial Intelligence Laboratory AREA A WORK UNIT NUMVIERS

545 Technology Square
Cambridge, MA 02139

1 1 CONTROLLING OVVICC "AME £940 &OORESS III. REPORT DATE
Advanced Research Projeczts Agency February_1987
1400 Wilson Blvd. is. NUmUa erOPPAGES

Arlington, VA 22209 2n2
4 MONITORING AGENCY MAME & ADDRESS(## d~flonml hV~ C411091 48161 0110410) 1S. SECURITY CLASS. 1.V Shoo ropert)

Office of Naval Research UNCLASSIFIED
Information Systems_______________
Arlington, VA 22217 IS& a. gk~,51CATION/ DOWNGRADING

so. DISTRIBUTION STATELMENT to# this AsPr)
M L

Distribution is unlimited.

17. OISTRISUTIOR STATEMENT (*#We..we WEIga*a.sagee

1S. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (CInfeew on revee,. *off a.....invr OmWE IdOff by0. block

analysis by inspection Programer's Apprentice
computer-aided instruction Plan Calculus
graph grammars program recognition
parsing programming tutor program understanding

20. ANSTRACT (Contims st revese BOSo 1I A@eoer and 9ESIir by 61100 manw)

The key to understanding a program is recognizing familiar
algorithmic fragments and data structures in it. Automating
this recognition process will make it easier to perform many
tasks which require program understanding, e.g., maintenance,
modification, and debugging. This report describes a recog-
nition system, called the Recognizer, which automatically
identifies occurrences of stereotyped computational fragments

D,~W 1473 EDITION oF I NOV Ss is oSsoLET-e UNCLASS IF IED
S/N ~O20I4 661 ISECURITY CLASSIFICATION OF TIlS PAGE fhken Des k8.9w..

SW

20. (Abstract continued)
and data structures in programs. The Recognizer is able to
identify these familiar fragments and structures, even
though they may be expressed in a wide range of syntactic
forms. It does so systematically and efficiently by using
a parsing technique. Two important advances have made this
possible. The first is a language-independent graphical
representation for programs and programming structures
which canonicalizes many syntactic features of programs.
The second is an efficient graph parsing algorithm.

S -J

'W
.or]

Automated Program Recognition

by

Linda Mary Wills'

Massachusetts Institute of Technology

February 1987

0 Massachusetts Institute of Technology 1987

Revised version of a thesis submitted to the Department of Electrical Engineering and Com-
puter Science on May 16, 1986 in partial fullfillment of the requirements for the degree of
Master of Science.

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research
is provided in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-85-K-0124 and in part by the National Science
Foundation Grant No. DCR-8117633.

'Formerly known as Linda M. Zelinka

1Jl

Abstract

-The key to understanding a program is recognizing familiar algorithmic fragments and data
structures in it. Automating this recognition process will make it easier to perform many tasks
which require program understanding, e.g., maintenance, modification, and debugging. This
report describes a recognition system, called the Recognizer, which automatically identifies
occurrences of stereotyped computational fragments and data structures in programs. The
Recognizer is able to identify these familiar fragments and structures, even though they may
be expressed in a wide range of syntactic forms. It does so systematically and efficiently by
using a parsing technique. Two important advances have made this possible. The first is
a language-independent graphical reprisentation for programs and programming structures
which canonicalizes many syntactic features of programs. The second is an efficient graph
parsing algorithm.

Thesis Supervisor. Dr. Charles Rich
Title: Principal Reseach Scientist

2

FLI

4

Acknowledgments

I am grateful to Chuck Rich, my thesis advisor, for generously sharing his ideas and advice
on both technical issues and personal decisions. His enthusiasm and support make working
with him very enjoyable. Dan Brotsky took some of the early steps in this area of research
and provided an implementation of his parsing algorithm in code that is easy to understand
and to extend. Yishai Feldman contributed ideas in many technical discussions, particularly,
on the analysis of loops.

I've gained many useful technical insights and writing suggestions from Chuck Rich and
Richard Waters. Other readers who have provided helpful feedback are Dave Chapman,
Yishai Feldman, Howard Reubenstein, and Scott Wills.

I am grateful for my friends, especially Jean Moroney, Elizabeth Turrisi, Anuja Kohli, and
Anita Killian, who gave me moral support and many happy times. I am lucky to have
wonderful brothers and sisters, who make going home fun and being at MIT bearable.

I'd like to thank Scott, my husband, for making sure I finished my thesis and for making me
very happy always.

I am thankful for the love and support of my parents to whom this thesis is dedicated.

3

Y *4d. It

Contents

1 Introduction 6

2 Program Recognition via Parsing 12
2.1 Overview of Recognizer's Capabilities.......................... 12

2.1.1 Recognizing Clich~s in Wide Classes of Equivalent Programs.........14
2.1.2 Overlapping Implementations........................... 16
2.1.3 Limits on What the Recognizer Understands................. 17

2.2 The Parsing Metaphor. 18
2.2.1 The Plan Calculus 18
2.2.2 The Clich6 Library 24
2.2.3 Flow Graph Parsing. 27
2.2.4 Additional Mechanisms............................... 34

2.3 Using the Extended Parser to Parse Plans........................ 43
2.3.1 Subgraph Matching................................. 43
2.3.2 Dealing with Constants. 58
2.3.3 Loops. 65
2.3.4 Partial Recognition 95

2.4 Documentation Generation. 105
2.5 Examples Demonstrating All Capabilities........................ 109

3 Limitations and Future Work 121
3.1 Limitations of the Recognizer............................... 121
3.2 Relevant Areas of Research................................ 129
3.3 Applications of Program Recognition........................... 134

4

4 Related Work 140

A The Constraint Sublanguage 1S0

B The Grammar 154

5

1 i1 11 1 1 S I ,F Il

Chapter 1

Introduction

Typically, programmers do not attempt to understand a program by collecting facts and
proving theorems about it, except as a last resort. Much of the programmer's understanding

comes from recognizing familiar parts and hierarchically building an understanding of the
whole based on the parts. For example, a programmer may recognize that a bubble sort

algorithm is being used to oTder the elements of a table. The table may be recognized as
having been implemented as a linked list of entries. This model of program undovstanding,
called analysis by inspection, has been developed by Rich [28].

The process of identifying occurrences of familiar algorithmic fragments and data struc-
tures in a program is referred to in this report as program recognition. A system, called the

Recognizer, is presented which performs program recognition automatically. Given a program,
the Recognizer builds a hierarchical description of the stereotypic computational fragments

and data structures of which the program is constructed.

Such a description of a program may be useful in activities such as documenting, maintain-
ing, modifying, and debugging the program. Automatic program recognition can help make

these tasks easier to carry out, both manually and automatically.

Aside from its practical applications, program recognition is a worthwhile problem to
study from a theoretical standpoint in Artificial Intelligence. It is a step towards modeling
how human programmers understand programs based on their accumulated programming
experience. It is also a problem in which the representation of knowledge is the key to the
efficiency and simplicity of the techniques used to solve the problem.

6

p ~ -. ,~i0

The Recognizer's Approach to Program Recognition

Performing program recognition automatically is difficult. Typically, there are a variety of
ways to syntactically express computational structures in code. Some structures are diffuse

in nature, requiring a global view of the code in order to find them.

The Recognizer's approach to program recognition differs from current approaches in two
important ways. First, it does not deal with the program in its source code form. Rather,
it uses a representation for programs which evolved from the Plan Calculus of Rich, Shrobe,
and Waters ([27,28,31,411). The Plan Calculus is a programming language-independent rep-
resentation in which programs are represented as graphs, called plans. In a plan, nodes
stand for operations, and edges specify the data and control flow between them. Plans are

quasi-canonical in the sense that they abstract away from how data and control flow are im-
plemented. It doesn't matter which binding or control constructs are used in a program -
only net data and control flow is shown in the arcs. This allows stereotypic structures to be
recognized in programs that have much syntactic variability without having to anticipate all
possible syntactic variations of each stereotypic structure and without using transformations
to canonicalize the code.

The second difference between the Recognizer's approach and other approaches is that
instead of using heuristics, the Recognizer employs an algorithmic technique in which program
recognition is treated as a parsing task. The basic idea is to convert the program into the
graph representation (which evolved from the Plan Calculus), translate the library of familiar
structures to be recognized into a graph grammar, and then to parse the program in accordance
with the grammar. Because the entire graph is systematically parsed, this approach is more
exhaustive than approaches which use heuristics. Also, because the Recognizer analyzes the
program in terms of a grammar of structures, when the structures are found, a hierarchical
description of how they are related to each other can be given. The heuristic methods cannot
easily generate this higher level description.

The Recognizer's approach is based on the idea that the stepwise refinement of a program
can be modeled as a formal grammar derivation. Brotsky [3] drew an analogy between the
implementation of high-level programming operations in terms of lower-level operations and

the derivation of a graph by systematically replacing given nodes with specified subgraphs.
VIf programs are represented as graphs and allowable implementation steps are captured in

7

- N

grammar rules, then a parse of the program's graph provides a description of the program's
top-down design.

No claim is being made here that programmers actually use top-down derivation in design-
ing a program. Nor is it being claimed that formal parsing is a psychologically valid model of
how programmers understand existing programs. For the present work, a grammar is simply a
useful way to encode the programmer's knowledge about programming so that parsing can be
used for program recognition. A problem for future research is to develop more psychologically

valid models. The parsing model is a good place to start.

N' Overview of the Recognizer

As a first step towards applying the parsing metaphor to program recognition, Brotsky [4]
developed a general-purpose graph parser which operates on a restricted class of labeled,
acyclic, directed graphs, called flow graphs. His flow graph parser takes as input a flow graph
and a flow graph grammar and determines whether or not the graph can be generated from

.*.-, the grammar. If it can, it gives all the possible derivations. The current research is concerned
with the application of the flow graph parser to program recognition. In order to use this
parser, a program must be treated as a flow graph and the collection of s~ereotypic structures
must be treated as a flow graph grammar.

In converting the program to a flow graph, the Recognizer first translates the program
source code to a plan by performing a control and data flow analysis on the program (as is
shown in Figure 1.1).

Although the program is a graph when represented as a plan, it is not quite a flow graph.V, ~There are several differences between the two representations. For example, plans may contain
cycles while flow graphs are acyclic. Data flow arcs may fan out to several nodes within plans,

.! but flow graphs cannot contain fan-out of arcs.

To make up for the differences between the two representations, some features, such as
fan-out arcs, are dealt with by exI.ending the flow graph formalism and parser. Features of the
Plan Calculus which cannot be handled by extending the parser, such as cycles, are transferred
to attributes on the nodes and edges of the flow graph. These are dealt with by a reasoning
mechanism which is separate from the parser.

8

W~~~~i f rP Nr-

Program

Plan

Tfranslate

Flow

Library N
of I~rnslat

Stereotypic, (Manually) Pams Attributes

Structures

Constraints Tees

Flow

CheckSuspndedGraph

Nraiolatin

Figure 1.1: The Logical Structure of the Recognizer

4 9

I N I I 7. v0 1 N ' I'lI IIN C 15 K)O

In order to convert information into attributes, an intermediate translation stage occurs
between the flow analysis and parsing stages. (See Figure 1.1.) The flow graph which results
from this translation contains a subset of the plan's nodes and edges. Any information that
the plan contains but which is not in the flow graph's structure is stored in the attributes of

the flow graph.

Not only must the program be represented as a flow graph in order to use the parser
for program recognition, but also the library of stereotypic structures must be translated
into a flow graph grammar. The grammar rules created by this manual translation place
constraints on the attributes of the program's flow graph. The constraint checking phase of
the Recognizer filters out the parses which do not satisfy the constraints. The translation of
the library into grammar rules therefore involves similar issues of moving information from

plans into constraints.

Figure 1.1 shows that the translation of the library to a flow graph grammar is done
manually. However, there is no intrinsic reason why the translation must be done by hand.
The same analyzer used in translating the program to a plan could be used if suitably extended.
Because of time constraints, the library is currently translated manually into a grammar. This
isn't a problem because this translation must be done only once for the library.

There are two major obstacles to performing program recognition via parsing. The first
difficulty is that recognizing some familiar structures requires that the program's plan be seen
in more than one way. (An example of this will be seen when the recognition of plans using
constants is discussed.) A mechanism is used which transforms subgraphs of the program's

graph into alternative subgraphs. The modified graph can then be reparsed. The transfor-
mation is done in the Transform phase shown in Figure 1.1. This will be explained in more
detail later.

The second reason program recognition cannot be performed simply by parsing the pro-
gram's graph is that programs are rarely constructed entirely out of familiar structures. There
are bound to be unrecognizable sections in most large and complex programs. Recognition
will therefore be partial. This means that parses may not always complete, i.e., they won't
always reduce the program's graph to a start node. However, the Recognizer gathers useful
information from successful subparses. Partial recognition also requires that the Recognizer
ignore parts of the program. The Recognizer does this by starting parsers at all "points" in the

10

;0,

program's graph. (The technical notion of this will be explained in section 2.3.4.) The parsers

are allowed to run as far as they can in order to extract as much information as possible.

In summary, the research described in this report focuses on the following areas:

. Developing a flow graph projection of the Plan Calculus.

" Adapting the flow graph parser to parse an extended flow graph representation.

" Coordinating parsers started at all points throughout the program graph.

" Dealing with information which is converted to attributes in the translation from plan

to flow graph.

" Allowing the program's plan to be seen from multiple points of view in order to recognize

more features.

- Motivation

This research is part of the Programmer's Apprentice (PA) project ([31,32,33,441) whose goal

is to design an intelligent software development system for assisting expert programmers in

all aspects of programming. Many of the tools brought together in the PA will benefit from

the use of a program recognition module.

The Recognizer will also be very useful in the area of computer-aided instruction (CAI),

since its ability to abstract away from the syntactic features of a program allows it to deal
with the great variability inherent in student programs. The ways that the Recognizer can

assist CAI applications as well as programming tools will be discussed further in Chapter 3.

Organization

Chapter 2 describes the problem of program recognition, giving the goals of the recognition

system and describing the parsing technique used to achieve them. This includes discussing

the rationale behind using parsing, how flow graph parsing works, and what additional mech-

anisms are needed to apply parsing to program recognition. Chapter 3 discusses future work
anticipated in improving the Recognizer. The chapter also shows how automatic program

recognition can be put to use in a variety of applications. Chapter 4 discusses related ap-

proaches to automating the recognition process.

5 N N 11

Chapter 2

Program Recognition via Parsing

Typically, in trying to understand code, a programmer looks for familiar algorithmic frag-
ments or data structures in it. Following Rich, Shrobe, and Waters ([28,31,32,411), these
familiar structures will be referred to as clichi.. Suppose, for example, that an experienced

programmer were given the code shown in Figure 2.1 and asked to describe it. (The code is
written in Common Lisp, as is all of the code in this report.) Though contrived, this example

is useful because it displays several clich6s in a short example. The programmer might recog-
nize that HT-MEMBER is checking for membership of ELEMENT in STRUCTURE which is a

hash table. Since one of the ways to implement a set is as a hash table, the programmer might
see HT-MEMBER as a set membership operation. The programmer knows that STRUCTURE
is a hash table because a bucket is fetched by computing a hash code and using it as an index

into an array. The bucket is then searched for ELEMENT. If found, T is returned, otherwise
NIL is the result. Because the search for ELEMENT in the bucket is terminated as soon
as an element is found which is lexicographically greater than ELEMENT, the programmer

might assume that each bucket is implemented as an ordered list. This also indicates that the
data objects in the hash table are strings and are arranged in lexicographic order within each

bucket.

2.1 Overview of Recognizer's Capabilities

The Recognizer is able to automatically perform a recognition process similar to the one just
described. The Recognizer takes as input a program and a library of clich s and finds all

12

OY

(O'w uT-uINDU (STRUCTUREU ELNET)
(LET ((BUCKET (A&ZF STRUCTURE (gEA .313?))

(ENTRY IL))
(LOOP DO

(IF (NULL DUCK27) aRTURN IL)
(SETO ENTY (CR IOKET))
(COlD ((STRING> ENTRY U30W3K) (RETURN NIL))

((EUAL ENTRY 33KM?) (R3TURN TM)
CSETQ BUCKET (CDI DOCKET)))

Figure 2.1: Undocumented Common Lisp Code

instances of the clichis in the program.

4 As a way of demonstrating the effectiveness of the analysis, one output the Recognizer can
automatically produce is a kind of program documentation. This documentation is generated

* by a module which receives al valid derivations from the Recognizer, as is shown in Figure
2.2. The documentation module uses a technique, due to Cyphers (81, of associating with each
clich6 a schematized textual explanation fragment. When a clich4 is recognized, the slots of
the explanation fragment are filled in by names of functions, variables, or other dlichds found.
Given the code in Figure 2.1, the Recognizer will produce the following comments:

ET-NEKDU is a Set Nembership operation.
It determiaes whether or not ZL10MN? is an element of
the set STRUCTURE.

The Set to implesiented as a lash Table.
* The lash Table is implemenated as an Array of buckets,

indezed by hask code.
The buckets are immeted as Ordered Lists. They
are ordered lexicographically. The elements in the
buckets are strings. An Ordered List Nenbership is
used to determsine whether or not ELENUIT is in the
fetched bucket, DUCKET.

Since the Recognizer does not understand natural language, some of the text generated
may be awkward or choppy. Fixing awkward text is not part of this research. Even though
the documentation produced by the Recognizer may not be as smooth as that written by

13

111 1 J11

* i

Program

Library Clich Recognizer

Cliche Vami

Derivations

Documentation

Generation

Textual Description
of Program

Figure 2.2: Generating Textual Descriptions from the Recognizer's Output

a programmer, it describes the main features of the program's design. A desideratum for
judging this output is for an experienced programmer to be able to understand it easily.

2.1.1 Recognizing Clichs in Aide Classes of Equivalent Programs

An essential capability of the Recognizer is that it can recognize when two programs are
semantically equivalent, i.e., they describe the same computation (see [27]), even though they
might differ either syntactically or in the way they implement a high-level operation.

Figure 2.3 shows another version of the HT-MEMBER code which is significantly different
syntactically from the code in Figure 2.1. The Recognizer yields the same analysis and textual
description of HT-MEMBER2 as was given for HT-MEMBER. The two programs differ in the
control and binding constructs which are used and in the binding of intermediate results. The
language-independent, quasi-canonical form into which the programs and clich6s are translated
allows the recognition process to yield the same description of both programs without being
misled by the syntactic differences.

Two programs may also be seen as doing an equivalent operation even though they imple-
ment it in entirely different ways. The Recognizer will give the same high-level description of

14A
a

(DIE NT-NU3ER (STAUC amU "A9 SET)

(SITU NET (AlaMTUC (~n ELE))
(LOOP DO

(VIE (NULL NET) (RTUN NIL))

(LET ((ENTRY (CAR NE))

(IF (STRI3GO ENTRY XLEN)
(RATURN NIL)
(IF (SQUAL 21111 ELEN)

(RETURN t)
(SITU NET (CDR UT)))))))

Figure 2.3: A Syntactic Variation of lIT-MEMBER

LIST-KENDR is a Set Neabership operation.
The set Is impemented as a List.

A List Neubex .hlp is used to determine whether
ELUIENT is an elemeat of the set STRUCTURE.

(DEFUN LIST-ENXBR (STRUCTURE ELEMENT

(LOOP DO
(COED ((DULL STRUCTURE) (RETURN NIL)

(09 (CAR STRUCTURE) ELEMNT)
(RM"U T))

(T (SITU STRUCTURE (CDR STRUCTURE))))))

Figure 2.4:- A Different Implementation of a Set Membership Operation

LM15

both of the programs. The rest of the description for each program will be different, reflecting

the differences in implementations on lower levels. For example, the code in Figure 2.4 can be

seen as equivalent to that of Figures 2.1 and 2.3 when viewed on a higher level of abstraction.

They all are described as set membership operations, even though Figures 2.1 and 2.3 are

Hash Table Membership tests and Figure 2.4 is a List Membership Test.

2.1.2 Overlapping Implementations

Another capability of the Recognizer is that it is able to recognize two distinct operations in

code, even though their implementations may overlap. This is an important strength since it

allows optimized code to be analyzed. For example, consider the following program.'

(D Z-NI L)
(LIr ((NA* (CA L))

(NIS (CAl L))
(L (CUt L)))

- " (LooP Do
(COED ((NULL L) (RETU (COIS KI NII)))
(SITQ Z=m (CAI L))
(IF (> Um K") (srmT KI a=3))

(IF (< U NIl) (SrTQ IS m))
(SrrQ L (CDR L)))))

This program computes both the maximum and the minimum of a non-empty list of num-

bers. Separately these are both standard computations. They are similar in that they both

enumerate the elements of the input list. The programmer has exploited this commonality

by sharing the list enumeration between the two higher-level operations. This type of opti-

mization is common and essential to good programming. It is therefore a valuable feature of

the Recognizer that it is able to analyze the MAX-MIN program even though the resulting

decomposition will not be strictly hierarchical. In the case of MAX-MIN, the decomposition

* may be represented as in Figure 2.5. The diagram's top node corresponds to the program

itself. The second level indicates that the program may be seen as consisting of a Maximum

operation and a Minimum operation. Each of these operations are further decomposed into

an initialization (which is (CAR L)), an Accumulation which keeps track of the largest (or

'Taken from an example in a similar discussiom in Chapter 1 of [281.

16

1111 1 5 11

MAX-MIN

Malximum Minlimum

Init Accum Enumcration Accum Init
(car) (>) (car, cdr, null) () (car)

Figure 2.5: Parse Tree for the MAX-MIN program

smallest) element found so far, and an Enumeration which is shared by the two subtrees for
Maximum and Minimum. The plans in this decomposition will be discussed further later.

2.1.3 Limits on What the Recognizer Understands

The Recognizer is able to automatically analyze programs containing nested expressions, con-
ditionals, single- and multiple-exit loops, sad some data structures. The Recognizer cannot
handle side effects other than assignment to variables, nor can it analyze programs containing
recursion, arbitrary data abstraction, or functional arguments. The library of clichs given to
the Recognizer is a subset of an initial library of cliches which has been collected and formalized
by Rich [28]. The entire library cannot be used because some clichis contain characteristics
not yet handled by the Recognizer, such as side effects and recursion.

Another limitation of the Recognizer is that it cannot explain what a piece of code is
good for. For example, experienced programmers usually know what kinds of operations
are made more efficient by implementing an abstract data structure one way as opposed to
another. For instance, a hash table implementation of a set is expected to be more efficient
than a list implementation if frequent membership testing or searching is to be performed on
it. The Recognizer is not able to make this observation since that involves a much deeper
understanding of the cliches than is captured in the grammar. Cliches may be annotated
with canned observations about a particular implementation if necessary, but the Recognizer

doesn't understand that type of comment.

The Recognizer also does not extract information from variable names or any documenta-
tion surrounding the original program (e.g., it can't guess that the abbreviation "HT" stands
for "hash-table").

17

2.2 The Parsing Metaphor

A good way to explain the design of a program is to give a top-down account. Higher-level

operations may be described as being implemented in terms of lower-level operations on each
successive level of abstraction. This is analogous to a flow graph derivation process wherein

a set of rewriting rules, called a flow graph grammar, is used to specify how given nodes

can be replaced by specified subgraphs. In this analogy, flow graphs correspond to graphical

abstractions of programs, flow grammars specify allowable implementation steps, and the

resulting parse tree gives the top-down design. The Recognizer's approach is based on this

analogy.

A crucial constraint on the flow grammar in this analogy is that it be contezt-free. The left-
hand side of each rule is a single node which gives a more abstract description of the right-hand

side graph. If the rules were context-sensitive, the left-hand side would typically be another

graph instead of a single node. This rule specifies a series of substitutions or modifications

to be made to the graph being derived. Context-sensitive rules would, by analogy, specify
program transformations in a wide-spectrum language, rather than incremental refinement

steps.

As will be seen later, the Recognizer makes use of program transformations in allowing

a program to be seen from multiple points of view (e.g., in the recognition of plans using
constants). However, these rules are not used in the normal parsing process. They are applied

to the program's plan in the transformation phase and then parsing is restarted on the modified

graph.

The key to being able to raise parsing from being simply a metaphor to being a technique
for recovering a top-down design of a program is the Recognizer's representation of programs.

This point will become clearer once the Plan Calculus, the clich6 library, and the flow graph

representation have been described in more detail.

4. 2.2.1 The Plan Calculus

The representation of knowledge has a direct effect on how easy or hard it is to carry out a

complex operation on that knowledge. In trying to perform the task of automated program
recognition, this is certainly the case. The Plan Calculus makes the recognition task much

easier and more straightforward. It allows programs to be represented as graphs and the clichi

18

I

Figure 2.6: The Plan for SOME-FUNCTION

library as a grammar, making them more amenable to a parsing technique for recognition.
The Plan Calculus representation is also valuable because it abstracts away from the syntactic
features of a program, allowing the program's algorithmic structure to be emphasized. Another
important fact about the Plan Calculus is that it is programming language-independent and
therefore may be used as the target representation for many different languages (e.g., Lisp

(31], Cobol (12], Fortran (41], and Ada [44]).

A program is represented in the Plan Calculus as a graph, called a plan, in which nodes
represent operations, and edges explicitly show the control and data flow between them. As
an example, Figure 2.6 shows the plan representation for the following code.

19

i 'n~~n 1141r 4' 1 1 11i 1 T .I ' "" , rl"l, " "" "

(DEUU SON-FUCTION (I Y z)

(D (COED ((A Y) (5 Z))

(T (C I Z)))))

As is shown in the figure, there are two types of edges in plans: one indicating data flow
and the other control flow. (When a graph is drawn, control flow edges are denoted by cross-

hatched lines, while data flow edges are solid lines.) Branches in control flow caused by a
conditional are represented by nodes, called splits, which have one control flow input arc and

two control flow output arcs, one for each of the cases of the split (true or false). The type
of all split nodes (in the present work) is NULL-TEST since the only primitive determiner for
conditional branching in Lisp is the test to see if an object is NIL. In other languages, there

may be more types of primitive tests and therefore more types of splits. A merging of control
flow and data flow (e.g., to obtain the return value of a conditional), is represented by a join.

These are boxes which have two or more incoming control flow arcs.

There is no fan-in of control or data flow in plans. Merges are accomplished via joins.

Also, data flow may fan out, but control flow may not.

In the Plan Calculus, all syntactic information about what types of binding or control

constructs are used is abstracted away. It doesn't matter if one program uses COND while
another uses IF, for example, or if one program binds intermediate results in variables while
another passes all data through nested expressions. If all the data flow is coming from matching
places in each program and the same operations are performed on the data, the plans for the

programs will be equivalent in terms of data flow. This is because the representation shows
net data flow. For instance the following code will have the same plan SOME-FUNCTION has

(shown in Figure 2.6) even though it is syntactically very different from SOME-FUNCTION.

(DEDUN AvOIUz-FUUCTOv (z Y z)

(LET. ((3Z (3 Z))
(CU (C I Z))
(RESULT (IF (A Z) DZ CIZ)))

(D RSULT)))

Net control flow is also represented, so that the particular control flow constructs used by

the program are abstracted away, making it easier to compare two programs. However, two
equivalent programs might not have exactly the same plan because some of the control flow

20

% 0
D- ; ,,rva '. , . ;. 2. "a'. .'. ., ; .. .r. ,,.,: . .,-.. . -. .. ,& '7.', . ",. ,. .

information of the program is not canonicalized enough by the plan. As will be shown, this is

a major source of trouble in trying to apply parsing to recognition.

Loops

Loops may be represented in the Plan Calculus in two different ways, either as a cycle in
control and data flow arcs, or by using a recursive node. The Recognizer uses the cyclic
representation of loops for reasons which will be explained in section 2.3.3. As an example of
the cyclic representation, the plan for the following code which computes the length of a list
is given in Figure 2.7.

(DEFVN NY-LIST-LENGTH L)
V(LET ((COUNTER 0))

(LooP DO
(COND ((NULL L) (RETURN COUNTER)))
(SETQ L (CDi L))
(SETO COUNTER (1+ COUNTER)))))

The second way that loops may be represented is the same way that a recursive call
to a function is represented, i.e., as a node with the name of the recursive function as its
operation type. To represent a loop using recursive nodes, the code containing the loop must

be translated into its tail-recursive form. For instance, the function MY-LIST-LENGTH would

be translated into:

(DEFUN RECSUIVE-LIST-LENGTN (L)

(LABELS ((TE ITSAL-LXST-LEIGTI (L COUNTER)

(IF (NULL L)
COUNTER
(INTERNAL-LIST-LENGTE

(CDR L)

(1+ COUrTER)))))

(INTERrAL-LIST-LENGT L 0)))

The plan for the tail-recursive version of MY-LIST-LENGTH is given in Figure 2.8. The

node whose label is "RECURSIVE-LIST-LENGTH" is a recursive node.

21

Z q *e

MY] .1ST-I.IFNGTH:

I 0
IT
Ijoi

nuI-s

I Ir

I I+

I I I

0

null

I cdrI

I I+

Recursive-
I List-LengthI

T F

L - - - join - -J

Figure 2.8: The Plan for the Tail Recursive Program RECURSIVE-LIST-LENGTH

23

The Flow Analyzer

The module within the Recognizer which converts a program from source code to a plan
is the Flow Analyzer. The method of translation is borrowed from the analysis techniques
employed by KBEmacs [44], the most recent demonstration system implemented as part of the
Programmer's Apprentice project. The translation is done in two stages: macro-expansion,
followed by control and data flow analysis.

The macro-expander translates the program into a simpler language of primitive forms. It
also selectively flattens parts of the program by open-coding functions and procedures inside
their callers. This allows variability in the way programs to be analyzed are broken down into
subroutines. It does not automatically flatten the entire program for efficiency reasons and
also because recursive functions cannot be completely open-coded.

The control and data flow analysis is performed by a symbolic evaluation of the program.
The evaluator follows all possible control paths of the program, converting operations to nodes
and placing edges corresponding to data and control flow between operations. Whenever a
branch in control flow occurs, a split is added. Similarly, when control flow comes back
together, a join is placed in the graph and all data representing the same variable is merged
together.

The graph that results from the flow analysis is a more canonical, language-independent
form of the program than the code is. Since it contains no deeper knowledge about the
program, it is called a surface plan.

The flow analyzer used by the Recognizer translates Lisp programs into plans. Similar
analyzers have been written for subsets of Cobol [12], Fortran (41], and Ada [44]), but are not
used in this system.

2.2.2 The Ciichi Library

The clich6 library contains a taxonomy of standard computational fragments and data struc-
tures represented as plans. For example, Figure 2.9 shows a plan which defines the dich4 for
finding the length of a list.

Besides the vocabulary of standard forms, the plan library contains implementation re-
lationships between the forms. The implementation relationships specify how one standard

24

//

F '
joi

Iults

Id

I1

Fiur 29AeintoofteCihfoCoptnaLs'segh

I2

04ILWI

=&a

List Set

List-Ilength Set-Cardinality

g7 Figure 2.10: Overlay Showing List-Length Acting as Set-Cardinality

. ,-.,"form may be implemented in terms of others. They are expressed in the Plan Library by imn-
,; .. :plementation overlays. They represent a shift in the way an operation or structure is viewed

Sby a programmer. For example, a typical overlay is iist-lengt h> set- cardinality (read "list-
~length as set-cardinality") which specifies that a list length operation can be viewed as an

operation to find the size of a set, given that the input set is implemented as a list. The

,,' list-length>set-cardinality overlay is shown in Figure 2.10.

As will be seen, both plan definitions and implementation overlays are (manually) trans-
lated into, or induce, grammar rules which are used to parse programs. Plan definitions

become rules which take a single node to a graph containing any number of nodes, while an

overlay-induced rule takes a single node to a graph containing exactly one node. When a plan

definition rule is used in the parse of a program, it recognizes a group of lower-level operations,

tests, and data structures as a single higher-level one. When an overlay-induced rule is used,
- it uncovers a design decision which implements a certain abstract data type as a lower-level

• ', ,.'..data type.

" used by the Recognizer do not contain the plan diagrams in the form shown in Figures 2.9

, and 2.10. Nor is the program parsed as a plan. This is because plans are not flow graphs

€'0 .as required by the Recognizer's flow graph parser. The differences between the flow graph

representation and plans will become apparent when flow graphs are described in the next

26

A%

section.

The reasons the flow graph parser is used by the Recognizer are that it is efficient, it
works, and it is extendable. Brotsky's algorithm runs in time polynomial in the number of
nodes in the input graph and linear in the size of the grammar. Brotsky provided a working
implementation of the algorithm written in Lisp. The parser is also easily extendable, so that
most of the differences between plans and flow graphs may be eliminated. Those that are
not are dealt with by additional mechanisms which are built on top of the parser. These
mechanisms will be discussed after the extensions made to the parser are described.

In addition to extending the definition of flow graphs, some of the information contained
in the plan representation of programs is removed from the plan and converted to attributes.
Thus, the representation of a program is a flow graph projection of the program's plan. It is a
flow graph whose structure contains some, but not all, of the information the plan contains.

a., .- 2.2.3 Flow Graph Parsing

A flow graph is a labeled, acyclic, directed graph with the following restrictions on its nodes
and edges. (This definition is due to Brotsky and will be extended.)

1. Each node has a label, called its type.

2. Each node has input ports and output ports. (Ports are positions at which edges enter or
leave a node.) Each port is labeled. No port can be both an input and an output port.
There are the same number of input and output ports on all nodes of the same type.

3. There is at least one input and one output port on each node.

4. All edges run from a particular output port of one node to a particular input port of
another. No port may have more than one edge entering or exiting it. Therefore, a node
can be adjoined by at most as many edges as it has ports.

A further characteristic of flow graphs is that ports need not have edges adjoining them.Any input (or output) port in a flow graph that does not have an edge running into (or out

of) it is called an input (or output) of that graph.

27

lW j

Extending the Flow Graph Formalism

Some of the differences between the Plan Calculus and flow graph representations may be
eliminated by extending the flow graph formalism and parser. Some characteristics which

occur in plans but which may not occur in flow graphs (given the definition in the previous

section) are:

" fan-out edges - The results of an operation may be shared by two or more operations.
This is represented as edges fanning out of a single port on a node.

" straight-through arcs - Data may enter a program and be given as an output without
being used by any operations in the program. This is represented by an edge running

through a graph which does not come from any output port or into any input port.

In addition, some features do not occur in plans, but arise in the flow graph projection of

plans as a result of solutions to other problems (as will be explained in Section 2.3.1). These

are:

* fan-in edges - More than one edge may enter the same input port on a node.

* sinks - Nodes may have no output ports.

The parser has been extended so that flow graphs may contain any of these characteristics.
In particular, the third and fourth restrictions given in the definition of a flow graph have been
lifted. Removing the third restriction allows flow graphs to contain sinks. Lifting the fourth
restriction means more than one edge may fan into or out of a port. It also means straight-

through edges are no longer forbidden.

An example of a flow graph is given in Figure 2.11. The ports and edges have been labeled
with subscripted "ps and "e"s, respectively, so that they may be referred to. Edge el is a

straight-through edge. Edges e3 and e4 fan out of port p2 on node b. Edges es and es fan

into port Pi on node g. Node d is a sink.

A feature of plans but not of flow graphs (even in the extended formalism) is that they

may contain cycles. This characteristic is dealt with by higher-ltvel mechanisms built on top

of the parser. This will be discussed in a later section (see section 2.3.3).

28

uQua

'.' e!

Cs

I P 3 e

44 Figure 2.11: A Typical Extended Flow Graph

Flow Graph Grammars

A flow graph grammar is a set of rewriting rules, each specifying how a node in a graph can
be replaced by a particular subgraph. All rules in a flow grammar map a single left-hand
side node to a right-hand side graph. The left-hand side node is of a nonterminal node-type,
while the right-hand side graph can contain nodes of both terminal and nonterminal types.

(Throughout this report, nonterminals are denoted by capital letters, while terminals are in
lower case.)

The flow graph in Figure 2.11 can be derived from the flow graph grammar shown in Figure
2.12 where node type A is a start node type. A sample leftmost derivation of the graph in
Figure 2.11 in accordance with the grammar of Figure 2.12 is given in Figure 2.13.

Each rule in a grammar has a mapping between the ports of the left-hand side and the
input and output edges of the right-hand side. When shown pictorially, this mapping is
indicated by numbers on the ports of the left-hand side node corresponding to edges of the

A? right-hand side graph. The mapping determines the connectivity of the left-hand side when
a subgraph matching the right-hand side is reduced to the left-hand side during parsing.
In Brotsky's parser, this correspondence is one-to-one. However, the correspondence in the
extended parser is both one-to-many and many-to-one.

For example, the rule for F in Figure 2.14 contains a one-to-many mapping. The port
labeled 3 on F is mapped to the output edges of both f and e on the right-hand side. When

29

11 R.4

1
3

44

1 3

33

Itt

I-.It

Figure 2.13: A Derivation of a Flow Graph

4 31

Figure 2.14: A Rule Requiring that a Subgraph's Trailing Edges Fan in

Creduces

Figure 2.15: Reduction of a Subgraph to F

an input (or output) port on the left-hand side node is mapped to more than one edge in.

the right-hand side graph, the correspondence specifies which input (or output) edges of the
subgraph matching the right-hand side must fan out of (or fan into) the same port when the
subgraph is reduced to the left-hand side node. For example, if the right-hand side of the
rule for F were recognized in a graph and reduced to F, the input port labeled I on F wil be
connected to whatever port fs input edge is connected to. Similarly, F's port 2 connects to

-i wherever e's input edge comes from. Input port 3 will be connected to whatever port both
output edges of f and e are connected to. This is shown in Figure 2.15. If the output edges
of f and e do not fan into some port, the reduction cannot take place.

*While a one-to-many mapping requires that certain edges must fan-in or fan-out, a many-
to-one mapping specifies a straight-through edge on the rule's right-hand side. The rule for
D in Figure 2.12 gives an example of a many-to-one mapping. In this rule, the input port
labeled 1 and the output port labeled 4 on the left-hand side node D are both mapped to the
same edge on the right-hand side.

..

Parsing

Flow grammars derive flow graphs in much the same way s string grammars derive strings.
The flow graph parsing process is a generalization of string parsing, in which most of the famil-
iar characteristics of context-free grammars for deriving strings apply. Accordingly, Brotsky

32

-SI...

developed a flow graph parsing algorithm which generalizes Earley's string parsing algorithm
(10]. The following is a much simplified description of the algorithm. The actual operation of
the parser is much more sophisticated and optimized. (Consult [41 for more information.)

Brotsky's algorithm deterministically simulates the behavior of a non-deterministic stack-

based parser. The simulation essentially allows several graph parsers to run in parallel, each
eventually coming up with a different guess as to the derivation of the input. Thus, all possible

* parses of the input are obtained. The way this is done is by marching a read head over the
input graph in one pass, scanning all nodes and edges exactly once. The position of the read
head is given by the set of edges which it cuts across. For each node scanned by the read

% head in the input, the algorithm generates all reachable configurations of all parsers being
run on the input. Since these parsers are collectively simulating a single nondeterministic
parser, the set of all possible configurations of the deterministic parsers can be seen as all the

configurations the nondeterministic parser might be in, given the nodes that were scanned in
the input graph.

The reachable configurations at each step are recorded in lists of items. Each item contains
' a recognizer which is attempting to match the right-hand side of some grammar rule within

the input graph being scanned. The right-hand side to be recognized is caled the target graph
- of the recognizer. The item has information, called the state of the recognizer, which specifies

-. where in the target graph the recognizer's read head is in relation to the read head in the
input graph. When a node is scanned in the input graph, the read head steps over it. The
corresponding read head is also stepped in all active items.

Any nonterminal in the right-hand side of a rule causes separate sub-items to be activated
for each rule which derives that nonterminal. The item keeps a list of pending calls to these

sub-items as well as a list of items to return to when its own recognizer completes.

How Extensions Were Made to the Parser

Because the algorithm is agenda-based, i.e., it works by consulting and updating the current
% A item list, its behavior can be controlled simply by altering this list. This is one of the strengths
Vof the parser which allows it to be adapted and applied to the problem of program recognition.

-.- ~ For example, to allow edges to fan out in the input graph or in the grammar rules' right-hand
- - sides, alterations are made to the item-lists as the parser is running. The alterations involve

33

% %

replicating items on the lists so that all possible correspondences between edges in the rule

and edges in the graph being parsed are tried.

2.2.4 Additional Mechanisms

Besides making extensions to the flow graph formalism, additional mechanisms have been
layered on top of the parser. The mechanisms are useful not only in solving many of the

problems of applying parsing to program recognition, but also may be valuable in areas of

research besides program understanding.

Attributes

One of the mechanisms built on top of the parser allows attributes to be placed on the nodes

and edges of flow graphs to be parsed. This is useful in dealing with information contained

in plans which cannot be dealt with easily by the parser. Associated with the right-hand

side of each grammar rule is a set of constraints. These are predicates which apply to the
.e attributes of any subgraph structurally matching the rule's right-hand side. During reduction,

the constraints are checked (by being evaluated) to be sure that the attributes in the nodes

and edges involved obey them. A parse is thrown away if the constraints aren't satisfied.

Because the constraint checking is folded into the parsing process, i.e., constraints are checked

each time a nonterminal is reduced, invalid parses may be cut off early.

There is a tradeoff between how much information should go into attributes versus into

the graph. If too little information is in the graph, a tremendous number of parses may be

successful, since the structural information is less specific and restrictive. The burden would
then be on the constraint checker to weed out meaningless parses. On the other hand, if

too much information is in the graph, the parsing process may become too complicated. For
example, it might be harder to canonicalize the graph if too much information were structurally
represented in it.

Attribute-'ransfer

During reduction, attributes may be transferred from the subgraph which matches a rule's

right-hand side to an instance of the rule's left-hand side node. This allows attributes to be

propagated up through the grammar. Thus, constraints may be placed on any node on the

right-hand side of a rule, including non-terminal nodes.

34

.o

00"

V N7 - ' . % %

Each grammar rule has attribute-transfer specifications which are used to compute at-
tribute values for the rule's left-hand side node based on the subgraph matching the rule's

right-hand side.

As an example, consider the grammar and graph to be parsed in Figure 2.16. The rule for
A has attribute-transfer specifications which may be used to compute the color attribute of
A. When the rule for B is subsequently applied, the constraint on A's color may be evaluated.

The attribute-transfer facility is useful in program recognition. A clich6 in the library
has not only a definition, but also a set of properties which are true of the more abstract
operation it defines. When the clichi is recognized in a program, these properties may be

assumed to hold true in the higher-level plans which use the plan recognized. The higher-level

plans may, in turn, have constraints on these properties. The properties become attribute
values when the plan is translated into a grammar rule. The attribute-transfer mechanism

allows the information derived from reduced plans to be propagated to portions of higher-level
clich6s not yet parsed.

Generalized Node Types

One of the ways in which attributes are used is in allowing generalized node types. When
Brotsky's parser compares a node in a grammar rule with a node in the graph being parsed,
it checks for the equality' of their types. Very often in using parsing to perform program

recognition, a grammar rule contains a node which may be one of several different types

which together form some identifiable class, for example, the class of all arithmetic operations

or the class of all predicates. Rather than providing a separate grammar rule for each type, it

is convenient to simply require that a terminal node's type be a member of a particular class.
The advantages of this is that the grammar does not become cluttered and fewer parses are

generated.

The parser's check for node type equality between a grammar rule's node and a node in

the graph being parsed is no longer simply an equality comparison. It is now a constraint,
called a node-type constraint, which each node in a grammar rule places on the type of the

node being matched with it. An example of a node-type constraint is that a node's type be a
member of the set of all arithmetic operators in Common Lisp.

The node-type constraints in the grammar rules are unlike other constraints in that they

Elel,35

k"5%

Grammar:

a Constraints:

Size of b is LARGE

b Attribut-fransfer:
~) 1 Color of 'A' becomes color of

2 3 2 3 whatever matches *a*

A Constraint:

B Color of 'As is RED

k
2 3 23

Graph to be parsed:

a Color: RED

Sise:LARGE
bA

Figure 2.16: An Example Using Attributes, Constraints, and Attribute-Transfer

36

1 2

1

2

a b =>C

3 4 3 4I"

I

Figure
2.17: A Transformation

Rule

are evaluated earlier than the rest. These constraints are evaluated as the nodes are scanned by
the parser's read head. Other constraints are not evaluated until after the structural parsing

of a rule is finished and a recognizer is ready to complete.

Transformation Rules

Often it is helpful to view the graph being parsed from more than one perspective, especially
when a parse fails. A mechanism has been built on top of the parser which allows trans-

formations to be made to the graph being parsed so that it may be seen in more than one
way.

Each allowable transformation is specified in terms of a transformation rule which is
context-sensitive. Its left-hand side specifies an alternate way to view the subgraph which

matches its right-hand side. A sample transformation rule is shown in Figure 2.17. When
the right-hand side of a transformation rule is recognized, it may be replaced by the rule's

left-hand side. This means that Graph A in Figure 2.18 may be transformed into Graph B

in Figure 2.18 by applying the transformation rule of Figure 2.17. Theoretically, this replace-

ment will create a new input graph for each transformation rule that is applied, each showing
a separate point of view of the transformed subgraph. However, for pragmatic reasons, the
input graph is actually shared among the transformations, allowing the edges on the left fringe
of the subgraph added to fan out from the input edges of the original subgraph and those

37

.

Graph A: Graph B:

e1' f e

c a b

d d

Figure 2.18: Graph A May Be Transformed into Graph B

38

C ab

* d

Figure 2.19: Result of Transforming Graph A

on the right fringe to all fan into the output edges of the original subgraph. This can be
.visualized as "sewing a patch" onto the input graph, where the transforming subgraph is the

patch being placed over the subgraph that is to be seen in a different way. The actual result
of transforming Graph A in Figure 2.18 is shown in Figure 2.19.

_A Since a transformation specifies two distinct ways to view a subgraph, the fan-in and fan-
out of the transformed subgraph's fringes should not be treated as normal fan-in or fan-out by

the parser. It would be an error for the graph in Figure 2.20 to be recognized as a subgraph of

the graph in Figure 2.19. Unfortunately, in the current system, there is nothing to prevent a
pattern from being matched that is partly in the original graph and partly in the transformed

aone. (This is because the implementation was not made robust enough due to time constraints

on the project.) This is a weakness that must be eliminated if the transformation mechanism
is to be used in a general way (as in the applications discussed in Chapter 3). For the current

recognition system, however, the transformation facility is adequate since the Recognizer only
uses the facility in a limited way to deal with arity mismatches between nodes. (This will be

39

r " "' " " ' . . .

e

a c

- d

Figure 2.20: A Subgraph Which Shouldn't Be Found in the Transformed Graph A

discussed in sections 2.3.2 and 2.3.3.) Because the class of transformations is restricted and
the cliches to be recognized do not contain any patterns that may use part of a transformed

graph and part of the original graph, the problem of recognizing a pattern that is partly in

both graphs does not arise.

There are a couple of other points to note about transformation rules. One is that trans-

formation rules have attribute-transfer specifications just as normal rules do. These compute
and transfer attributes from the graph matching the right-hand side to the left-hand side

graph into which it is transformed.

Another point is that transformation rules are not used in regular parsing to transform

the graph. Instead, the parser only attempts to recognize their right-hand sides in the graph.
Rather than reducing the right-hand side to the left during parsing, the graph is transformed

in a separate phase (the Transform phase, shown in Figure 1.1). After being transformed, the

graph is reparsed in case the transformation allows previously failing parses to succeed.

There are many uses of the transformation mechanism. As will be seen, it is a way of

40

a'

0:
-p : ,

introducing program transformations in a limited and controlled way. Other uses will be

*described in the future work section. Among these is a facility for performing recognition in

buggy programs.

Restarting Suspended Parses

A third mechanism which is built on top of the parser enables failing parses to be temporarily

suspended and then restarted where they left off, usually after some change has been made to

the graph (via a transformation).

Because the parser is agenda-based, it is easy to suspend a parse temporarily. Instead of

killing an item when its rule's right-hand side doesn't match the subgraph currently being

scanned, the item is frozen along with its state, derivation lattice, and reason for failing so
that it can be resuscitated after the input graph has been modified. When it is restarted, it

picks up where it left off by reinstating its read head pointers in the input graph.

Selecting which parses to restart may be done on the basis of properties such as the

location in the graph where they ran into trouble or the reason that they failed. This means,

for example, that a transformation may be made and then only those parses which were

parsing the section of graph affected by the transformation may be restarted. The Recognizer

uses this approach.

The freezing and resuscitating technique is an optimization that allows the Recognizer to
make only one parsing pass which may be interrupted by transformations. During this parsing

pass, several things are done in parallel: normal recognition of clichis occurs; transformable

sections of the graph are recognized; parses that cannot be carried through to completion are

suspended until the subgraph they are parsing is modified. After a transformation, parsing

resumes, allowing suspended parses to complete if possible. This is much more efficient than

having several parsing passes.

Other Uses of Transformations and the Restart Mechanism

Both the transformation and the restart mechanisms are flexible in that either may be em-

ployed at any time. In the current system, they are used hand-in-hand. However, either

may be used independent of the other. For example, sometimes parses may fail because of a

41

'i9'

constraint violation. The parse may be restarted without performing any structural transfor-

mations on the graph. The only thing that is changed is that the violated constraint is assumed

to hold true. Chapter 3 will describe in more detail the ways in which these mechanisms may
be useful.

42
a.

A~a~ <~~;K*~~ iv ;ld'~ 42

2.3 Using the Extended Parser to Parse Plans

There are several obstacles to performing program recognition by parsing. Some problems
arise because the plan representation doesn't canonicalize control flow information enough

to allow subgraph matching alone to be used in recognizing cliches. Another problem stems

from the fact that the recognition of plans which use constants may require that the program
be seen in more than one way. A third problem is that plans may contain cycles in data or

control flow arcs. These are not allowed in flow graphs and therefore need to be converted

to another form. All of these problems are overcome by using the mechanisms described in
the last section. A fourth problem, not solved by these mechanisms stems from the fact that

programs cannot always be entirely reduced to the single start node of a grammar. Parts of
the program's plan may need to be ignored and information must be gathered from subparses.

The next four sections will deal with each of these problems separately.

2.3.1 Subgraph Matching

The Recognizer finds those sections within the program's plan which match clichis in the

library. Since it does this by parsing, it finds subgraphs of the program's graph which match
the right-hand sides of rules in the grammar. A fundamental part of parsing graphs, then,

is subgraph matching. For example, a simple straight-line clichi is the Interval-Length clichi

which computes the absolute difference between two input numbers. Its plan is shown in
Figure 2.21. The following (contrived) program contains the Interval-Length cliche.

(DEFUN NULT-LUOTI (I Y X)

(ADs (- I Y)) X))

The plan for MULT-LENGTH is shown in Figure 2.22. It contains the Interval-Length plan

as a subgraph. Once this subgraph reduces to the left-hand side of the grammar rule induced

by the Interval-Length clich6, the code corresponding to this subgraph can be described as
computing the length of the interval between X and Y.

Why Subgraph Matching Cannot Be Used Directly on Plans

Performing subgraph matching on plans does not always lead to the recognition of all the

clichis which occur in a program. There are two major problems. Both stem from the fact

43

V

V

, 4, "

.'"". "'. ''-'.."". '" ."". "" ,r2.. . ..""..'" ."""" .". "" . " '- ". .' ,2" " % %%" %

Imcmvdi- I.ength:

I Abs

Figure 2.21: The Plan for the Interval-Length Clichi

MI -,NGIH

Abs

Figure 2.22: The Plan for MULT-LENGTH

44

ITA4.

that the Plan Calculus does not sufficiently canonicalize some aspects of the program related

to control flow. In particular, even though it is able to abstract away from which control flow
constructs are used in a program, it is too restrictive in representing the order of execution
of operations and how joins merge data and control flow. The result is that two programs

may be semantically equivalent but have different plans. This is a major obstacle to using
4 isubgraph matching in comparing two plans.

,'.

There are two problems with the Plan Calculus representation which hinder subgraph
matching. First, it fails to capture the transitivity of control flow. Second, it doesn't treat
joins as being associative.

As an illustration of the first problem, that transitivity of control flow is not represented,
consider the graphs in Figure 2.23. The smaller graph to the right ("FH") represents a clichi
which should be found in the plan to the left ("FGH") which is the plan for the following
function.

..... (DEFUN FGI (1)

(LIr ((Z (7 1))

(Y (C M)
(I (I Z) Y)))

However, this clichi cannot be found because its plan definition does not occur as a sub-
graph of FGH's plan. There is a control flow arc missing between the F and H nodes. By

. transitivity of control flow, there is control flow between the two nodes, but the plan does not

show it explicitly.

In order to solve the transitivity problem, the transitivity of control flow must be captured.

One way to do this is to transitively close the entire plan with respect to control flow. This
", is an expensive computation, however. The extra control flow arcs bring added complexity

to the graph. Furthermore, the transitive closure computation is made more complicated by
sections of the plans which contain splits and joins and which need to be treated specially. In

particular, all sections of a plan which have splits and joins at either end must be treated as
a single node when closing the rest of the graph. Within the split-join section, each branch
of the split must be transitively closed independently. This computation is combinatorially

explosive.

The second major problem with the Plan Calculus is that it doesn't treat joins as being
associative. Joins, when nested, can associate in a variety of ways. For example, both of the

45

%V.

UC I it

F I F

Figaze~~~~~~~~ 2.3 hIln o h rga G n h lciF

.446

1 68%ir eI

TI Ti

T2 T2

T3 T3

D C B A D C B A

'Ir

ioin join

join oi

join join

Figure 2.24: Two Equivalent Plans in Which Joins Associate Differently

"S 47

3%

I0l

N plans shown in Figure 2.24 are semantically equivalent, since joins are associative. Yet they

%. do not structurally match each other.

Expressing Transitivity of Control Flow

Rather than representing control flow as arcs and explicitly closing them under transitivity,

the Recognizer's approach is to remove control flow arcs from the plan altogether and represent

the information that they contain in attributes on nodes.

Control flow arcs specify two types of information which need to be either recorded in
attributes or thrown away if not needed for recognition. One is the order of execution of

operations chosen by the programmer. This order is irrelevant to the recognition process,
since the only order between the operations which must be the same in two equivalent plans
is that imposed by data dependencies. Data flow arcs provide this structural constraint. For1

example, FGH1 and FGH2 in Figure 2.25 are semantically equivalent even though the order

in which F and G are executed is not the same. (This is because the Recognizer aumes
* that F and G do not have any side effects. In the future, if the Recognizer is to analyze

programs which have side effects, the data flow arcs must model the side effects.) This type
of information is therefore not recorded.

. (DWFU FG11 (1) (Damn FaN (1)
(Ler M (F I)) LIr (C (a x))

(Y ())) (Z (F)))
(Ir (I, Z) T))) Uz M Z) Y))

Figure 2.25: Two Semantically Equivalent Programs

The second type of information which control flow arcs provide is relevant to the recognition
process and is therefore converted to attributes. This information specifies how to group

together operations which are in the same control environment. Control environments specify
under which conditions operations are performed. Each operation contained in a control
environment is performed the same number of times as every other operation in that control

environment. That is, all operations in a control environment co-occur. All operations in a
straight-line expression are in the same control environment. When control flow splits, two

,..

d-

N..

new control environments are created, one for the true side and one for the false side of the
split. Each branch of the split is in a separate control environment.

Each node in a plan has an attribute which tells the control environment of the operation
it represents. Splits are different than nodes that represent operations in that they have two
extra attributes, success-ce and failure-ce which specify the control environments of the two
sides of the conditional.

Control environments form a partial order in which the order relation is called C. A control
environment, ce,, is less than or equal to another control environment, cei, if operations in

-.ce, are performed at least as many times as those in cei. For example, in the plan in Figure
2.26 (shown without data flow arcs for clarity), all operations are annotated with a control
environment (in the form "ce" subscripted with a unique number). In the figure, ce4 Q ce2

*because the operation C in ce4 is only performed when the test B fails. Control environments

of opposite branches of a split, such as ce3 and ce4, are incomparable.

It is also useful to define a partial "addition" operation on control environments. The sum
of the number of times operations are performed on each branch of a conditional is equal to
the number of times the operations surrounding the conditional are performed. That is, the

sum of two control environments gives the control environment of the split which created them
-. (as well as the control envirc.-ment of any join which merges them). An addition operation is

therefore defined as: given two control environments, ce and ce,,, ce + ce,,, = ce, iff ce, is
the control environment of the split which created cel and ce,. In figure 2.26, ce4 + ce5 = ce 2.

That is, the sum of the number of times operation C is performed and the number of times

D is performed in any execution of the program is equal to the number of times operation B
is performed.

The addition operation is commutative and associative. It is a partial function since it is
not always defined. The addition of two control environments is only defined when the control
environments are on opposite sides of the same split. For instance, ce + ce2 is undefined.

Given this definition of addition, subtraction may be defined as: if ce + cen = ce, then
cen - ce. = eel, and ce, - Cel = ce,. In figure 2.26, ce - ce2 = ce3 .

Constraints on control environment attributes may be used to solve the control flow tran-

49

F -- W w
A

.. 'r. #u¢cc: c :Ce

A -: cc
null-test success-cc: cc2

F fausre-ce: cca

cc:' cc 24 B F cc: cc

*vccess-ct: cc

failure-cc: cc T F

Ce:c ¢cc-i

Figure 2.26: Control Environments

-i.

50

r r4 -. f r r r WI

sitivity problem. In the FGH example, the grammar rule induced by the FH clichi becomes:

F Constraint:

FH -~F and H co-occur

FHH

22

This rule places a constraint on the control environment attributes of the nodes F and H,

requiring that they have the same control environment, rather than requiring that F and H
have a control flow arc between them. This means that instead of requiring that H be executed
immediately after F, the rule requires only that H is executed whenever F is executed and

that H always receives data flow from F.
The flow graph projection of the plan for FGH is:

e': C I j (': (C I

H ve: re

The control flow arcs have been removed and control flow attributes have been placed
on the nodes. The right-hand side of the rule for FH would be found in this graph and the

51K,%
&..AN

-'C..../.w*~/*.~*** 4. .. ~ . 4. .. .0 1

, . , -nu
ll-t st

""

F, T

~join

Figure 2.27: A Sample Plan Containing a Join

constraint that F and H be in the same control environment would be satisfied. Thus, the
clich6 FH would be recognized in FGH.

Expressing Associativity of Joins

The problem of representing the associativity of joins is also solved by removing information
from the plan and placing it in attributes. In particular, all joins are removed from the
plan, causing all data flow arcs merged by the join to fan into operations which received the
merged data flow from the join. Thus, no particular way of associating the joins (e.g., always
associating them to the left) needs to be enforced in order to canonicalize the graph.

52

S =

succc.vv-rc': cr
test >]ilure-cc: ce

carries (chi clrries thii
.l It (ill C'e

~ p.

Figure 2.28: An Attributed Flow Graph Projection

The information that needs to be converted to attributes is: for each incoming data flow
arc, in which control environment is data being carried by that particular arc? For example,

suppose there were a plan definition such as the one shown in Figure 2.27. The join in Figure

2.27 specifies that when the true side of the split is taken, SQRT will receive data flow from

the COS node and when the false side is taken, it will receive data flow from SIN. This
information is converted into attributes on the edges of the graph which are being merged.

The attribute on each edge tells in which control environment the edge carries data flow. For

.. instance, the plan in Figure 2.27 becomes the annotated flow graph in Figure 2.28 when the
joins and control flow arcs are removed.

The typical constraint placed on an edge in a grammar rule is that it must carry data

53

r 1
1 11 1

1 2 >Constrinbs:

1. 1)ia flows into "s~qn*" troin
."sin" in the failurc-cc

somne- 2.ll f "null-tcst"
2. tta flows into %.qrt" frcm

Formula tet 0cos" in thcqsucccss-cc
of' "null- test"

3

Figure 2.29: A Grammar Rule with Data Flow Constraints

A. (SQRT (COED ((> I Y)
(SIN I))
(T (COS Y))))

9. (LEPT ((SIN-I (SIN IM)
(SQR? (COED ((> I Y) SIN-I)

(T (COS Y)))))

Figure 2.30: Code Fragments in Which Some-Formula Appears

54

flow in a particular control environment. For example, the grammar rule induced by the
Some-Formula plan is shown in Figure 2.29. (The constraints are given informally so that
the reader may ui-Jerstand them without having to understand the syntax of how they are
specified. Their actual syntax and definitions are given in Appendix A.)

The Some-Formula plan will be recognized in both code fragments in Figure 2.30, even
though in fragment B, SIN is not in the failure-ce of the null-test. This is because Some-
Formula's constraint is not on the attributes of the SIN node but rather on the edge between
SIN and SQRT.

In summary, determining whether two plans are semantically equivalent cannot be done
simply by matching them against each other as graphs. Some of the information in plans
must be converted to annotations on the plan's nodes and edges. What is left is an attributed
flow graph projection of the plan. Two plans are equivalent if their flow graph projections

match and their attributes satisfy any constraints that either plan has on the attributes of
the other. Therefore, the core operations of recognition via parsing are subgraph matching

(of flow graphs) and logical subsumption (of attribute values).

How Extensions to the Parser Enable Parsing Flow Graph Projections

It can now be seen why extensions were made to the parser to allow it to parse graphs
containing sinks and fan-in edges, as well as fan-out and straight-through edges. When control
flow arcs are removed, split nodes become sinks while the removal of joins causes data flow arcs
to fan-in. These extensions are all necessary, for example, in recognizing the Absolute- Value
cliche in the following code.

,(DINE ABS-VAL (1)

(COD ((PLUSP 1) 1)

(T (NEGATE 1))))

The flow graph projection of the plan for ABS-VAL is shown in Figure 2.31. The null-test
is a sink. There is a straight-through edge from the input to the output, representing the fact
that the input to absolute value is given as the output without being changed if the input is
positive. There is fan-out of data flow, indicating that the input data may be used by NEGATE
or simply returned. The fan-in of data flow indicates that the output of Absolute-Value may
come either from the NEGATE operation or directly from the input.

455

:@*I ° .

p~t~sI

carieus ch,,a carries dm4a

Ill ~il Cejff 1

Figure 2.31: The Flow Graph Projection of the Plan for ABS-VAL

56

AM,~

I. II tl flows out from

SpIusp the input i the
liiilurc- :c of"null-temt"

-2. I) floa fiows out from
Absoute- ncguac" in tic

Vau LII- .sLL,-.'C of "null-ics"
Lest A ttrihuit-trAnslcr.

2 1. CC = CC of"nuII-(cst"

2 2

Figure 2.32: The Rule for the Absolute-Value Clich,

The rule induced by the Absolute-Value clich6 is shown in Figure 2.32. (The formal

definition of this rule and the rest of the grammar used by the Recognizer is given in Appendix

B.) In this rule, the mapping from the input port of the left-hand side node to all leading

edges requires that the input to both NEGATE and PLUSP, and the output (in the cae of

positive input) all come from the same place. Likewise, the mapping from the left-hand side

node's output port to both trailing edges requires that the data flow from NEGATE and from

the input must be used in the same place.

This sectiom has shown how the extensions made to the parser and the attribute mechanism

are used to solve one of the difficulties of performing recognition by parsing. The next difficulty

that will be discussed is the problem of recognizing clich6s in programs when the clich6s and

programs contain constants.

57

' 1

* !(%141 ~*, ~~V

2.3.2 Dealing with Constants

When a program or clichi uses a constant, it may represent the use of the constant in two dif-
ferent ways: either as an explicit input into the operation which uses the constant, or as being
incorporated into the definition of the operation. For example, two graphs for incrementing
an input integer are shown in Figure 2.33. (In Figure 2.33a, the fact that the second input
into the "+" is coming from a constant whose value is I is represented in the flow graph as
an attribute on the input arc. This is drawn as a hooked line around the input arc with a I
beside it.) In Figure 2.33a, the constant is represented explicitly, while in part b of the figure,
the constant is implicit in the "1+" operation.

+ 1+

a. b.

Figure 2.33: Two Graphs for Incrementing an Integer

Constants in Grammar Rules

When a clichi containing a constant is translated into a grammar rule, the constant cannot
be represented explicitly. If it were, the modularity of the grammar would be violated. For
example, the clichi Average is computed by the expression (/ (+ X Y) 2). Average should be
thought of as having two inputs - the numbers to be averaged. It does not have an extra
input for the constant 2 (as is shown in the incorrect rule in Figure 2.34). 2 Furthermore,
allowing Avermp to have an additional input would destroy the modularity of the grammar
since the extra input must be propagated up through all rules that use Average, as in the

2 The "X's on either side of the rule indicate that it is an incorrect rule.

58

,
ii!

1 23 I 2 3

Averagc

X 4
X

4

Figure 2.34: An Incorrect Grammar Rule for the Cich Average

(incorrect) rule shown in Figure 2.35.1

This problem also cannot be solved by having an input from the constant on the right-

hand side but not on the left-hand side (as in Figure 2.36) because it violates the constraint

on grammar rules that their left- and right-hand sides must have the same arity.

The way the Recognizer deals with this problem is that when an operation in a clichi

receives data flow from a constant, the operation is transformed into the equivalent partially

evaluated function which results from closing the function with respect to the constant input.

(This is currying if the constant is the first argument to the function.) Thus, when the plan

becomes a grammar rule, the rule's right-hand side has no constants. For example, when one

of the inputs to "+" is constrained to always be 1 in a clich6, the operation is transformed

into "+" when the clichi is translated into a grammar rule. This means there is only one

rule for the plan for incrementing an integer (i.e., Figure 2.37).

Incorporating constants into operations in a rule's right-hand side must be done recursively.

If a constant is incorporated into a unary function, yielding a new constant, then that constant

must be incorporated into the operations that use it. For example, consider the graph in Figure

2.38(a) to be some rule's right-hand side. If the constant 2 is incorporated into the operation

SQRT, then a new constant is formed which represents the constant vl/ (Figure 2.38(b)). This

onstant must be recursively incorporated into the * operation as in Figure 2.38(c).

3The squiggles in the rule indicate that there is more to the right-hand side graph without going into its
details.

59

.16 U IIII 11 1 A qiI11 11111 1141 1

4'11,II q 2,.

11 2

Avcragc

Figure 2.35: A Rule Exhibiting Bad Modularity

1 2 1 2

Average+

23/

3

Figure 2.36: An Incorrect Rule Violating the Arity Constraint

Inc 1+

2 2

4Figure 2.37: The Rule for Incrementing an Integer

* 60

--- 2

sq rt

.12

(a) (b) ()

Figure 2.38: Recursively Incorporating a Constant into Operations

Later in this report, some rules which contain constants on their right-hand side may be

shown with the constant represented explicitly as in Figure 2.36. This is done for clarity.

The reader should assume in these cases that in the actual rules used by the Recognizer, the

constants are incorporated into the functions that use them.

- Constants in Programs

Because programs may represent the use of a constant in two different ways (either as an

explicit input or as being incorporated into the operation), two difficulties arise. First, since

constants are always represented implicitly in grammar rules, a rule's right-hand side won't

match the graph of a program which uses the constant explicitly. For example, the right-hand

side of the rule for Increment given in Figure 2.39a will not match the graph for (+ X 1) shown

in Figure 2.39b.

The second difficulty is that if a program represents a constant as being incorporated into

some operation, then it will not match with a rule's right-hand side in which the operation
does not require a constant as input. For example, the right-hand side of the rule for Add in

Figure 2.40a will not be recognized in the graph for (1+ X) in Figure 2.40b.

The way that the Recognizer deals with the first problem, i.e., that cliches which use
constants will not be recognized in programs which use constants explicitly (e.g., (1+ X) will

.o"C

61

N% %

Inc 1+ +1

2 2

a. b.

Figure 2.39: The Rule for Increment and a Program Graph

1 2 I 2

Add z>+ 1+

3 3

a. b.

Figure 2.40: The Rule for Add and a Program Graph

62

...........

.• %.j

. "-

1 2

+ +
33

Figure 2.41: Transformation Rule for Viewing Constant in More Than One Way

not be recognized in (+ X 1)), is by allowing the program to be viewed in more than one
way at once. The two ways that (+ X 1) may be viewed are those shown in Figure 2.33.
This is achieved by using transformations along with the parse restart mechanism. The
transformation rule needed is one which will transform representations of operations which

receive data flow from a constant to the representation in which the opefation incorporates
the constant into its definition. For instance, the transformation rule needed to view (+ X 1),*

as the two graphs in Figure 2.33 is shown in Figure 2.41. This rule specifies that whenever a
S+" operation occurs in a program and receives data flow from the constant 1 as its second

argument, then the "+" may be transformed into the graph on the left-hand side of the rule.
(The node of type ignore indicates that the input from the constant should be ignored. When
the parser scans this edge, nothing needs to match with it.)

Once a transformation has been made, any parses which depended on seeing the graph

in an alternative way are resuscitated. In the case of (+ X 1), the parse for recognizing
Increment cannot succeed at first and is temporarily suspended. The right-hand side of the

transformation rule of Figure 2.41 is found and during the Transform phase, the "+" is
transformed into "1+'. This allows the parse of Increment to complete successfully.

The second difficulty (i.e., that the plan for (+ X Y) will not be recognized in (1+ X)) is
dealt with by always expanding the input form in which a constant is incorporated into an

operation into the canonical form in which the constant is given as an explicit input. (This is
V done in the analysis phase of the recognition process.) This means that whenever (1+ X) is

encountered, it is translated into (+ X 1), allowing the plan for (+ X Y) to be recognized in it.
The expansion of forms in which constants are implicit in the operations that use them to forms
in which they are explicit is always performed. The Recognizer relies on using trasformation

rules to recognize cliches which contain constants and which therefore induce rules in which

63

constants are implicit in the operations that use them. For example, when recognizing the

plan for Increment (Figure 2.40a) in (1+ X), the Recognizer canonicalizes (1+ X) to (+ X 1)

and then uses the transformation rule of Figure 2.41 to view the ""as a '1+".

.64

A.

,.- *,

(DEFUN POS-ELEU1S (L)
(LET ((NZV-L NIL)

(5 NIL))

(LOOP DO
(COED ((NULL L) (RETURN EW-L)))
(SETQ 2 (CLA L))
(IF (PLUSP E)

(SETQ NEV-L (CONS E IEV-L)))
(SETQ L (CDR L)))))

Figure 2.42: A Function Containing a Loop

2.3.3 Loops

The desired analysis for the program in Figure 2.42 is that it enumerates the elements of the

list L, filters out all positive elements, and accumulates them in the list NEW-L. This type of

analysis requires that the loop be thought of as a straight-line composition of operations which

act on sequences. That is, the loop must be temporally abstracted. Temporal abstraction is a

representation technique, developed by Waters [42], Rich [28], and Shrobe [31], to capture the

commonality between different loops. Each operation is seen as a temporal fragment acting on

each element of a series of values, called the temporal sequence, simultaneously. For example,

in POS-ELEMENTS, two of the sequences being operated upon are the series of values of L

being given to CAR and the series of values of NEW-L being given to CONS. The CAR operation

is viewed as a temporal fragment, called a Map, which takes a sequence of lists and outputs

the sequence consisting of their CARs.

By analyzing a subset of the programs in the IBM Scientific Subroutine Package by hand,

Waters [42) found that most loops can be temporally abstracted into a small number of basic

loop fragments. Rich formally defines the basic loop plans for temporal fragments in [28].

aThis section shows how the Recognizer temporally abstracts loops by using grammar rules

induced by the basic loop plans. First, it discusses the cyclic plan representation of loops and

tells how the plans are translated into attributed flow graphs. Then, the basic loop plans will

be described in more detail, showing how they become rules which serve to raise the cyclic

view of the program up to a temporally abstracted, non-cyclic view.

65

I%.- j:

Representing Loops

Loops may be represented in the Plan Calculus as either cycles in control and data flow arcs

or as tail recursions. The Recognizer uses the cyclic plan representation of loops. When

converting the plan to a flow graph, the cycles are broken and the graph corresponding to the

loop body is parsed. The decision to represent loops as cycles rather than as tail recursions

came from the realization that analyzing loops is the first step in being able to analyze recursive

P programs.

Difficulties arise in using either representation for loops. Cycles cannot occur in flow

graphs, on the one hand. On the other, the use of recursive nodes would introduce additional

A. problems having to do with arity mismatches between recursive nodes in grammar rules and

those in the graph being parsed. (This will be explained in greater detail in the section on

recursion in Chapter 3.) However, breaking the feedback arcs and parsing the loop body

is easier than dealing with the arity mismatches. Furthermore, the information that the

feedback arcs contain and that is converted to attributes is the same information that must

J'. be extracted from a tail recursive plan when it is translated to a flow graph. (The next section
will describe what information is converted to attributes. This corresponds to the information

that is extracted from recursive plans, as will be seen in the section on recursion.)

Because the information that must be converted to attributes is the same in both the

cyclic and tail recursive representations and because using recursive nodes introduces more

complexity, analyzing loops (as cycles) is a subproblem of analyzing recursion. The insights
gained and the work done in analyzing loops form a basis for further research into recognizing

cliches in recursive programs. Therefore, it was decided to solve the problem of recursion

incrementally, rather than all at once.

Converting Loop Control Flow Information to Attributes

Figure 2.43a shows the plan for the contrived program in Figure 2.43b which computes

the length of the CDR of a list and squares it. In order to parse this plan, the Recognizer

must remove the cycle in control and data flow. It must then parse the flow graph projection

of the body.

The information contained in the feedback arcs is converted to attributes in the following
way. When a data flow feedback arc is broken, the ports which were the endpoints of the arcs

66

4%

(DEFUW S-RUTSIZ CL

(LET. (RUT (DI L)

(LU~F 0))

(S +T LU=T (1IUI)

,1%01

(DEMSQ-M -SIZ (L

MM0= (RQ

(Lam
1

0))

I
are annotated with the attribute that the source port feeds-back to the sink port.

In addition to feedback correspondences, control environment information is also converted
to attributes. The essential control flow information associated with loops can be summed up
in three control environments. These are:

* feedback-ce - the control environment in which the control of a loop feeds back to
the beginning of the loop.

. outside-ce - the control environment from which a loop is entered and into which it

exits.

e loop-body-ce - the highest control environment of a loop's body. It is the control
environment of the first operation reached in control flow when the loop is entered.

Figure 2.44 shows the plan for SQ-REST-SIZE on the left and the flow graph into which the

plan is translated on the right. The flow graph is annotated with the appropriate attributes.

"Feeds-back" attributes are denoted by subscripted asterisks. For example, the output of
the CDR within the loop's body feeds back to the input of NULL and the input of itself.
The control environments of the loop are attributes of the loop itself. The graph records a
set of the important loop control environments for each loop. The outside-ce of the loop in

SQ-REST-SIZE is cel, the loop-body-ce is ce2, and the loop's feedback-ce is ce 3.

Grammar Rules for Loop Plans

Now that the flow graph representation for loops has been described, the grammar rules
used to parse it will be explained. These rules are induced by the basic loop plans used to

temporally abstract programs which contain loops.

Generation
The Generation plan takes as input a data object and a function and outputs a temporal

sequence. The output sequence is the result of repeatedly applying the operation to the output
of the preceding application of that operation. For example, a Cdr-Generator takes a list and
the function CDR and produces a sequence consisting of all the successive sublists of the list.
In the function POS-ELEMENTS, successive values of L are generated in this way. Similarly,

68

pVVhsle

Vr'

cdr (V Ce I

joinn Li CE'. CC

/ ~ nllntll- ww(cs -c: cc1

* test]IIdurc-(c. cc

null-test ctlrrlS41(

c, cdr --- Inc

Scdr cc: Cc1 +

A square

11-

Figure 2.44: Left: Plan for SQ-REST-SIZE; Right: Attributed Flow Graph Projection

69

Lo, ai SI %=2k

1Constraints:
1. output of "f* fe*dback to input of "'
2. node-type of "f is any function

Generation f 3. If* is in a loop

Attributo-'ransfer:

2 1. Gen's Function whatever type

00, matchs f*
2 2. Generation's cc outside-ce of the

innermost loop containing the cc of "f*

Figure 2.45: Rule for Generation Plan

a Count is a generator which takes an integer and the function "1+, and outputs a sequence
of consecutive integers beginning with the input integer.

The grammar rule for Generation is shown in Figure 2.45. (Data flow edges which are
viewed as carrying a sequence are drawn with a double-lined arrow.) The feedback constraint
specifies that the output of CDR feeds back to the input. Thus, the Generator repeatedly
applies the generating function to the previous output of that function.

There are several points worth noting about the rule for Generation that are relevant to

the other rules for basic loop plans as well. First, even though the plans all take a function
as an input, when each plan is converted to a grammar rule, the function is not represented
explicitly in the structure of the rule. Rather, it is handled in attributes and constraints on
attributes. The rule has a constraint on the type of function that may be used as an input
into the plan. In the case of Generation, the function can be any operation in Common Lisp
that is in a loop and that satisfies the feedback constraints. However, it will be seen for other
plans, such as Filters, that the function will be constrained to be a predicate. The reason

for handling the functions this way and the implications of this will be discussed after all the
rules for loop plans have been described.

Because the function used by the Generation plan may be any operation in Common Lisp,
rather than having a grammar rule for each type of operation, the Recognizer makes use of

generalized node types. In order for a higher level rule which uses a Generation nonterminal to
be able to determine which function was used by the Generator, one of the attribute-transfer
specifications is the transfer of the function type to the left-hand side node. Thus, when Cdr

70

V0
~ %% sV~'*- . ~ w~ A~' A~94 V 4 '.~4~~% '.~'"'.%

1 1 ConstalUta:

1. node-type of "fr is any function
2.'r is in a loop

MAttrlbute-lfrane:

1. Map's Function := whatever type

matchs "f
2.2 2. Map's ce :- outside-ce of the

innermost loop containing ce of' *f

Figure 2.46: Rule for Map

Generation is found in POS-ELEMENTS, it will be reduced to a Generation non-terminal node
with an attribute specifying that CDR is the generating function.

Another point to note about the rule for Generation (which is true of all the rules for the
basic loop plans) is that in the attribute-transfer, the left-hand side node's control environment

becomes the outside-ce of the innermost loop in which f is found in. This is because when a

loop is temporally abstracted, it becomes straight-line and is placed in the control environment

of the surrounding code.

Map

The plan for Map takes a temporal sequence and a function as inputs and gives a sequence

as output. The output sequence is the series of values produced by applying the function to

each element in the input sequence. The grammar rule for Map is shown in Figure 2.46.

The only constraint that the rule for Map enforces is that f be in a loop. With such a

loose constraint, almost any operation in a loop can be seen as a Map, including CDR in

POS-ELEMENTS (where it is also identified as a Generation), since they all use a sequence

of values and output a sequence of values. It is a feature of the Recognizer that parts of the

program can be seen as playing more than one role.

As has already been pointed out, the function POS-ELEMENTS contains a Map which takes
the function CAR and the sequence of lists generated by the Cdr-Generation and outputs the

sequence consisting of the CAR of each sublist.

J..

/,.

71

% %

CouatrabAta:

1 1 1. Whatever usee output is in a
ce 1;success-ce of aTet-Predicate'

2. 'Test,-Predicate' is in a loop
Fil.er Test- trbt-rse:

Predicate Atlbt.fadr
1. predicate :- predicate of T7est-Predicatel

2 2. Control-env. :- outside-ce of innermost loop
2 containing *Test-Predicate

1 1 Corahte:

P ~ 1. 9P is any primitive predicate

Attuibute...sindes:
Test- 1. Prediate :=whatever matches with 'Ps

Predicate null- 2. Success-ce :-failure-ce of 'null-test'

tat 3. Failuro-ce : success-ce of null-teat*
4. Coutolenv- :- ce of n&ull-tes

Figure 2.47: Rule for Filter

4,. Filter
The Filter plan takes a temporal sequence and a predicate and outputs a restricted subset

of the input sequence. The output sequence consists of all terms in the input sequence for
which the predicate is true. For example, in POS-ELEMENTS, there is a Filter whose predicate
is PLUSP and whose input sequence is the sequence given by the Car-Mapping. The output
sequence is the series of values of "E" given to CONS in the following statement:

(SETQ VZV-L (COgs Z IV-L)

The grammar rule for Filter is shown in Figure 2.47. This rule makes use of a new type

of constraint on an edge, which requires that the data carried by the edge must only be used

by an operation which is in a particular control environment.

p. The rule for "Test- Predicate" is also given in Figure 2.47. By using this nonterminal, the
rule for Filter specifies that the filtering predicate may be any primitive test predicate. (Note
that the rule for "Test- Predicate" makes use of generalized node types.) As will be seen, this

S'S nonterminal is used in many of the rules for other loop plans besides Filter.

72

r'r..

06

,~. i *,p . p . '%

p

1 2 1 2Constraints:

1. output of *f* feedsback to second input of 'f"
2. nod-type of Ie in any binary

Accumulatio f aggregative function (e.g., cons, plus, times)
I Attribute-'hansfer:

3 1. Accui 's Function :- whatever type

-o 3 matches d r

S2. Ce :- outside-ce of

the innermost loop containing f h

Figure 2.48: Rule for Accumulation

Accumulation
The Accumulation plan takes a binary aggregative function (such as CONS, +, or *), a

temporal sequence, and an initial value. On each repetition of a loop containing an Accumu-
, [telation, the function is applied to the current element of the input sequence and the result of

the function on the previous iteration (or the initial value, if on the first iteration). Thus,
the output is the sequence of values, starting with the initial value, resulting from repeat-
edly applying the function to the current element in the input sequence and the result of the
previous application. For example, the function POS-ELEMENTS contains an Accumulation,
called List-Accumulation whose function is CONS. It receives the stream of values from the

Filter and the initial value NIL. The output sequence is the series of values NEW-L takes on

Vi as input to CONS in the statement below, over all iterations of the loop.

* (SMT NIV-L (CONS 2 WIV-L)

* Iterative- Aggregation is another type of Accumulation. In Iterative- Aggregation, the ac-

cumulation operation is an aggregative function which is commutative, associative, and has

4,, identity elements and the initial value is the identity element for that function (e.g., sum,

product, union, or intersection).

The rule for Accumulation is shown in Figure 2.48. The feedback constraint indicates that
"I..,.the Accumulation function is repeatedly applied to the current value of the input sequence

and the output of the previous application of that function.

Truncate
The Truncate plan takes a sequence and a predicate. The output sequence is a subsequence

of the input sequence consisting of all terms of the input sequence up to, but not including

73

%" A

'Jr ' * *1~~ ~

1 ConstraInts:

1. Whatever uses output is in a
ce C failure-ce of "Test-Predicate"

Truncate Tes 2. "TestPredicawe is an Exit-Predicate
(i.e., Succes.- outside-ce and

Falure-ce 3 feedback-ce)
2 Attribute-Mrander:

2 1. Predicate := predicats-type of "Test-Predicate,
2. Termination-ce := success-ce of sTest-Predicate'
3. Continuation-ce := failure-ce of Test-Predicate
4. Control-cav. :- outside-ce of innermost

loop containing ce of "Test-Predicato'

Figure 2.49: Rule for Truncate

the first term that passes the predicate. A typical predicate is the test to see if a list is empty,

i.e., NULL.

The grammar rule is shown in Figure 2.49. Two new attributes are used. These are

"1 termination-ce and continuation-ce. The termination-ce is the control environment in which

the loop is exited and it corresponds to the success-ce of the exit predicate of Truncate. The

continuation-ce is the control environment in which the loop body continues to be executed.

It corresponds to the failure-ce of the exit predicate.

Truncate-Inclusive

The Truncate-Inclusive plan is similar to Truncate. Its grammar rule is shown in Figure

2.50. The only difference between the plans is that Truncate-Inclusive's output sequence

consists of all terms of the input sequence, up to and including the first term that passes the

predicate. Consequently, the only difference between the rules for Truncate and for Truncate-

.1 Inclusive is in the constraint specifying where the output is to be used. Truncate requires that

it be used in a control environment less than or equal to the failure-ce of Test-Predicate, while

Truncate-Inclusive requires that it be used in a control environment greater than or equal to

that of the Test-Predicate.

574

* 2.- . -. ~~*,

41
,.'.,.,'.'..'' - " : " ",".v.'-'-. -. " '"''- .'--'"- ; . : : : ? "%,, .. -

".'. ."-':-, """',' ,'&d WO ,7,".""" " "." :. ,.""",,' ,'- i,:.-., ,, ,, ',

1 1 Constraints:

r1

1. Whatever uses output is in a ce

control environment of Test-Predicate"
Truncte d Test- 2. Te*t-Predica" is an Exit-Predicate

InclsivePredicateInclusve #2Attribut-Transfer:
(same as for Truncate)

22

Figure 2.50: Rule for Truncate-Inclusive

To see the relationship between Truncate and Truncate-Inclusive, consider the following

program.

(DDIM FAI-PON (1)

(A 1)

h. (LOOP DO

(C 1)
(COED ((T1 1) (UTVU)))

(SEI I (D I)))
(1))

All values tested by the exit test Ti, including the value that passed the test are used by

the operation C. This means that the input stream to the Map of C comes from a Truncate-

Inclusive in which the truncation predicate is Ti. On the other hand, all values tested by TI,

except the one that passes the test, are used by D. So, the input stream to the Generation

using D comes from a Truncate whose exit predicate is Ti.

Co-Truncate

Often two sequences are being used in parallel in a loop and one is truncated based on the

occurrence of an element in the other that satisfies the truncating predicate. The Co- Truncate

plan describes this case. It takes as input two sequences and a predicate. The output sequence

is a subsequence of the second input sequence. It consists of all terms of the second input

sequence up to, but not including the term that corresponds to the first term of the first input

h. sequence which satisfies the predicate. The grammar rule is shown in Figure 2.51.

75

I6 .
% %

V.".

.

, ", +....-. + .,.w , '%
"

'o, ". - . "• ' .'.+.*........ "'', +'""+ .,..='< - . " ", . "-•, .."W"""" " """ "" "" • - -"-

1 2 2

Constraints:
55Test- (same as for Tfruncate)

Co-Truncate Predicate Attribute-transfer:

(same as for Tfruncate)
S3 3

Figure 2.51: Rule for Co-Trun. op1

1 22

Constraints:

Co-Truncate et (same as for Truncate- Inclusive)
Inclusive Predicate Attribute-transfer:

(same an for Truncate)
33

Figure 2.52: Rule for Co-Truncate- Inclusive

Co-Truncate- Inclusive
Analogous to Truncate- Inclusive, is Co-Truncate- Inclusive, which has the same structural

form as Co-Truncate, but one constraint is different. Instead of the output being used in a
control environment 1: the failure-ce of the exit predicate, the output must be used in a control
environment 0 the exit predicate's control environment. This reflects the fact that the output
sequence consists of all terms of the second input sequence up to and including the term that
corresponds to the first term of the first input sequence which satisfies the predicate. The
grammar rule for Co- Truncate- Inclusive is given in Figure 2.52.

Earliest
K The Earliest plan is related to Truncate. It takes as input a sequence and a predicate.

Rather than giving a sequence as output, however, the plan returns the first term of the input
sequence which passes the predicate. The rule for Earliest is shown in Figure 2.53.

Co-Earliest

Co-Earliest is analogous to Co-Truncate in that it takes two sequences and a predicate

76

@4d-r .

N, W.-- *5~

5.-S~ '-~~~ -.5Man

1 1 Constraints:

1. Whatever uses output is in a
ce Q outside-ce of innermost loop

E tTest- containing cc of Test-Predicate"
Predicate 2. 'Test-Predicatel is an Exit-Predicate

2 Attribute-ransfer:
q2 (same as for Truncate)

'p.

Figure 2.53: Rule for Earliest

2 1 2 Constraints:
(same as for Earliest)

Test- Attribute-Mranfer.:

Co-Earliest Predicate (same as for Truncate)

3 3

Figure 2.54: Rule for Co-Earliest

and gives as output the element of the second sequence which corresponds to the first element
of the first sequence satisfying the predicate. The only difference is that its result is a single
element rather than a sequence. Figure 2.54 displays the rule for Co-Earliest.

Last

Finally, the plan for L t takes a sequence and returns the last element of that sequence.

It is given by the rule shown in Figure 2.55 and consists almost entirely of a single constraint
on how the output is used.

Implications of Dealing with Functional Inputs as Attributes

All loop plans take a function as one of their inputs. For example, Filter takes a predicate
to apply to each element of its input sequence. When the plans are converted to grammar
rules, the input function becomes a constraint. For example, the input function to Filter
is constrained to be some primitive predicate in Common Lisp. The reason that the input
function is not represented explicitly as an input to the node in each rule's right-hand side

77

V,.,
S . * .

1 1 Constraints:

1. Output is used in ace
p.'" r- outside-ce of loop in which

Last input stream is being generated

Attribute-Mransfer:

1. Ce := outside-ce ofloop in which

42 2 input stream is being generated

Figure 2.55: Rule for Last

is that the present system cannot analyze programs which take functions as arguments. The
Recognizer does not understand, for example, that (CAR X) and (FUNCALL 'CAR X) are the

same.

The consequence of this is that the Recognizer must take a somewhat awkward approach
to deal with a program in which a loop plan is given an n-ary function as its input function.
For example, consider the following function which contains a Map of the operation TIMES.

* (DDFUI SUN-SCALS (L K)
([Zr ((SCALED-S 0))

(LOOP DO
(COND ((NULL L) (1ETURN)))
(SEtQ SCALED-SUN (TINU K (CAR L)))
(SETQ L (CDR L)))))

The sequence of values given by the Map of CAR is given to the Map of TIMES, along with

the value of K. The analysis of this loop should contain the observation that the operation
of multiplying by K is being mapped over the elements of L. To do this the Recognizer must

realize that K acts as a constant with respect to the loop. Its value doesn't change over the
iterations and K is therefore called a loop constant. The operation being mapped over the
elements of L isn't simply TIMES, but the function TIMES partially evaluated, having been

given one of its arguments, i.e., (LAMBDA (X) (TIMES K X)).

Transformation rules (such as the one shown in Figure 2.56) are used to view a function
which is inside a loop and which receives data from a loop constant as a partially evaluated

function. The rule's right-hand side specifies the function to be transformed. In Figure 2.56,
this is any function in a loop given a loop constant as a first argument. The rule's left-hand

--- 78

I%

Constraints:

p- 1. 'f1 is in a loop
1 2 1 2 2. Input I is a Loop Constant

Attribute-M'ansfe':

1. 1f2' := type of node matching fl'
2. 'f2* is cloeed-wrt ita first argument

which receives data flow from [input 11

-'p3 3

Figure 2.56: Rule for Dealing with a Loop Constant

side allows the input from the loop constant to be ignored and gives the transformed node

the following attributes during attribute-transfer: function-type and closed-wrt (which stands

for "closed with respect to"). The value of the function-type attribute is the operation type.

* 4 Closed-wrt associates the number of each of the function's inputs which is receiving data from

a loop constant with the port in the graph parsed from which the loop constant is coming. The
*= constraint partially-evaluated, when applied to a node, holds true if the node has any values for

the closed-wrt attribute. For instance, when the right-hand side of the rule in Figure 2.56 is

recognized and replaced by the rule's left-hand side, the node 2 is seen as partially evaluated.
The function which matched ft is closed with respect to its first argument. Its first argument

receives data flow from the same port that is connected to input 1 of the left-hand side graph.

The Recognizer must deal with partially evaluated functions by using constraints because

it cannot analyze programs with functional arguments. If the Recognizer were to acquire this

ability, then the partially evaluated functions may be dealt with in a more straightforward way.

In particular, rather than having constraints specify the type of partially evaluated functions

and how they are closed, this information may be represented explicitly in Funcall and Close
nodes. "Funcall" nodes correspond to the FUNCALL operation in Common Lisp which gives

the result of applying the first argument (which is a function) to the rest of the arguments.

"Close" nodes specify that a function is closed with respect to some argument. They give
another function as output.

For example, if these nodes were available, the rule for Map would be the one shown in

Figure 2.57. The left-hand side of the rule corresponds more closely with the intuitive notion

of Map which is that it has two inputs: a function and a sequence to map the function over.

This requires that the function calls in a loop be seen as being achieved via FUNCALL (i.e.,

79

0%

• ",Iv " ' ': ' ', ,." , " . "% " ,

1'.

12 Constraints:
1 2 1. funcall* is in a loopI

Attribute-transfer:
funcallI. Map's Function := input 1

Map 2. Map's ce := outside-ce

. y 3

.J. 3

Figure 2.57: Rule for Map When Using Funcall and Close Nodes
IIMIFS K

Close

ui nca l

Figure 2.58: Graph in which Map Occurs

(CAR X) must be seen as (FUNCALL 'CAR X), as in Figure 2.57). Additionally, any functions
which are applied to loop constants must be seen as being closed with respect to the loop

constant. For example, the expression (TIMES K E), where K is a loop constant but E is not,

must be viewed as (FUNCALL (CLOSE 'TIMES K) E), as is shown in Figure 2.58. In this way,

a Map may be recognized in the graph in Figure 2.58, yielding the analysis that the operation

of multiplying by K is being mapped over the sequence of values E takes on over the iterations

of the loop.

Because of time constraints and the complexity this technique would add to the Recognizer,

this approach has not yet been taken. It is worthwhile pursuing in the future. For now,

however, the attribute and transformation mechanisms will be used to deal with the problem

of partially evaluated functions.

4 80

-80

M 1111P P I v % %v V,

GenraI onI.- G~etcraii aiid *I'iciL co-occur-4 Geerall~ll2. (eiici,,i ii ftii~cioii is *Ldr"

SUblist- 3....- - Truncit s I)ediciiie is " il

Entinicirition I lrihi-I'rmiisfer:

PI
1runullte I CC : = CC 016 0 0 Of~ r 11 ol h IoCS

2

Figure 2.59: The Rule for Sublist-Enumeration

Loop Examples

This section gives examples of higher-level plans which contain the basic loop plans just

described.
Sublist-Enumeration

A common clichi involving the loop plans Generation and Truncate in which the input

functions are CDR and NULL, respectively, is the Sublist-Enumeration clich6. The grammar

rule for this clich6 is shown in Figure 2.59. It is found in the following program whose flow
graph is shown in Figure 2.60.

(DEFUN SANPLE-SLE (L)

(LET (CE IL))
(LOOP DO

(COED ((NULL Q) (RETURN)))

* (SETQ L (CDR L)))))

In Sublist-Enuineration, the successive sublists of the input are generated by the Cdr-

Generation. The Truncate applies the predicate NULL to each of the sublists generated by the
Cdr-Generation. As long as the predicate is not passed (i.e., the sublist tested is not NIL),
Truncate will give as output the sublist it tested. Thus, this pattern of loop plans implements

-4.-,81

I"

n11 CV: (CV

'..
i

('e: t
'
2

_-..
tes fiilure-,',: ,'e

Figure 2.60: The Flow Graph for SAMPLE-SLE

the operation of "cdr-ing down" a list, making each sublist available to operations in the loop

body, until the end of the list is reached.

List-Enumeration

Another common cichi , called List Enumeration, makes use of the Sublist-Enumeration

clich6 along with a Map whose input function is CAR. The grammar rule for this clich6 is

shown in Figure 2.61. It is found in the following program whose flow graph is shown in

Figure 2.62.

(DEFUN SAIPLE-LE (L)

(LET (CE n L))
(LOOP DO

(COED ((NULL L) (RETURN)))
(SETQ E CCAR Q)

(SSTQ L (CDR L)))))

/ .In List-Enumeration, the successive sublists of the input list are enumerated by Sublist-

Enumeration. The first element of each sublist is given in the output sequence of the Map

82

.7 1

11 r 1 1 P I

Co(wadiniis:

4:SLI iist- 1. SUhlkt-I ilLI.1fl~l'tiOll ;1111 ill pCO-oc:CUr
HIiLInleraion 2. Ntip-Ibimcilli is "citr

Humeiration Al(ribu~e'rrnisfer:

I. Cc:= cc o)fcitcr oILh 11Cnodes

Figure 2.61: The Rule for Lis t- Enumeration

n cc: Ce 2

flI - success-ce: ce
test]afilurece: c

cc c cdr car c('- e 3

Figure 2.62: The Flow Graph for SAMPLE-LE

83

@4IJ

.0d

.

which maps the function CAR over all the sublists given by the Sublist-Enumeration. Thus,
List-Enumeration "cdr's down" a list, making each element available to operations in the loop

4 body.

As another example, consider the following code in which a List-Enumeration of SL is
recognized, but not a List-Enumeration of L. This is because, although the structural form
of a List-Enumeration of L is contained in the program, the co-occurrence constraint between
the Sublist-Enumeration and Map has been violated. It is right that the Recognizer recognizes
only a List-Enumeration of SL, because although the program "cdr's down" L (via Sublist-
Enumeration), it doesn't make each element of L available (using CAR) within the loop.

(DEU iETED (SL)
(LET ((L NIL)

(nEl IL))
(LOOP DO

(COED ((NULL SL) (agrruu)))
(SETQ L (CAR SL))
(SETQ E1 (CAR L))

(LOOP DO
(COND ((NULL L) (RETURi)))

(SETQ L (CDI L)))
(SETQ SL (CDR SL)))))

List-Reverse
The plan for reversing a list uses List-Enumeration, Accumulation, and Last, as is shown

in Figure 2.63. Each element enumerated is accumulated using the function CONS. The
initial value of the Accumulation is Nil. The final element of the sequence generated by the
Accumulation is made available outside the loop by Last. Since each element is "consed" onto
the front of the list resulting from the previous application of CONS, the elements are added
to the accumulated list in reverse order.

84

-g

List- Constrints:
Enumeration

/1. List-Enum, Accum, and Last co-occur
L -NIL 2. Accum'e Function is 'cone

List- 3. Accum's initial value (input port 2)
Reverse 3 is the coastan NIL

Accumulation Attulbut M ransfe r :

2 a 1. Ce :- ce of any of the nodes

Last

2

Figure 2.63: The Rule for List Reverse

An example of a program in which List Reverse is recognized is:

, (DUVIm RV CL)

(LET ((M-L NIL))
(LOOP DO

(COlD ((NULL L) (lTURN IR-L)))

(SETQ NEV-L (CONS (CAR L) NEW-L))
(SETQ L (CDi L)))))

If the last two statements of the program were switched as in the code and flow graph

in Figure 2.64, the List-Reverse cliche wouldn't and shouldn't be recognized because there is

a structural mismatch. The first element of the input list is not included in the output list

and the value of L which passed the exit test will be included in the input sequence to the

Accumulation. Thus, the output will be a list starting with NIL, followed by the reverse of the

CDR of the input list. The reason is that the List-Enumeration generates the next element of

its output sequence while the current value is still needed. This is a common bug. A library

of bugs may be built by collecting structural variations of plans such as this one.

85

test fifilur-ce: ce~

(LIT1MC ((UZ-L lL

(COED ((TL L) (RIUr inV-L)

(SITQN LU-E (CIL))

(SETQ IKV-L (CONS (CAR L) 1911-0))))

Figure 2.64: Buggy Code for Reversing a List and Its Flow Graph

86

,pol r
k

-0 (oi.lr~aints:

I. G(c 'cr,,tion. CounL. a.d Cu)-l'arliCst

GeneriuLon Countfl co-iic or

:':I .st i.s I "l1st1 i-lr: i; t i. " ll"

I: -cligi h4. 1Iilnt it) Ci t coisc% i,n, the

Co- Farliet costmilt 0
,, ,\ I Mt r ih w el -T r aIns fetr:

V2 I. Cc = cc ol'any of'he ifodcs

Figure 2.65: The Rule for List-Length

(onstrain(s:

Cu 1. Gcncrion's unctioii is "1 +"

C n Generation ,.\IttribuLe-'ransfer:
I. Cc := cc ofGcncration

Figure 2.66: The Rule for Count

List-Length
The rule for List-Length, shown in Figure 2.65, uses Co-Earliest and Count. Count's rule

is shown in Figure 2.66. It generates a sequence of numbers, starting with the input number.

In List-Length, two sequences are generated in parallel: the sequence of sublists of L

generated by a Cdr-Generation and the sequence of natural numbers. The output is the

natural number corresponding to the first sublist (Ni) which passes Co-Earliest's predicate

(NULL).

Positive-Sublist

The plan for Positive-Sublist makes use of the Filter plan. The grammar rule is shown in

Figure 2.67. The elements of the input list are generated by the List-Enumeration and filtered

so that only the positive elements are given as input to the Accumulation. This plan may be

recognized in the function POS-ELEMENTS shown again below.

87

1 Constraints:

List-numertion1. List-Enumeration, Filter, and
Accumulation co-occur

Positive- 2. Accumulation's Function is 'cns'
Sublst Flter3. Filter's Predicate is 'plump*

- J NIL 4. Accumulation's initial value is the
Accumuationconstant NIL

Acuu2to Attribute-Mransfer:

La2 1. Ce cc of any of the nodes

Figure 2.67: The Rule for Positive-Sublist

101 (DEFIJI POS-ELEKENI WL
(LET ((IEV-L NIL)

(In.)
(LOOF Do

(COED ((NULL L) (RETURN ME-L))
(SKTQ 2 (CM Q)

(IF (PLUEP 2)
(SETQ IEV-L (CONS K iEW-L))

(SMT L (CDR L)))))

* Positive-Sublist will not be recognized in the following buggy version of P05-ELEMENTS
(IF has been changed to UNLESS). This is because the constraint of the Filter restricting the

control environment in which its output may be used is violated. In particular, the output is

used in the failure-ce of the filtering predicate, rather than in its success-ce. The Accumulation

function CONS uses the tested element in the failure-ce of the Filter's predicate. This means

only non-positive elements are accumulated.

88

7 MX

1 Constraints:

List-Enumeration 1. List-Enum and Earliest co-occur

Sequential- Attribute-Mrans/er:
List-

Search Earliest 1. Ce := cc of either node
2. Success-ce Earliest's termination-ce

2 3. Failure-ce List-Enum's termination-ce
2 4. Predicate predicate of Earliest

Figure 2.68: The Rule for Sequential-List-Search

(DEFILU BUGGY-POS-ELENUTS (L)

(LET ((NEV-L NIL)
(Z NIL))

(LOOP DO
(CO D ((NULL L) (RETUR M-L)))

(SETQ 9 (CAR L))
(UNLESS (PLUSP E)

(SETQ IEV-L (CONS E NKV-L)))

(SETQ L (CDR L)))))

Sequential-List-Search

The plan for Sequential-List-Search describes a two-exit loop. One exit is taken if an
element of the list is found which satisfies some predicate and the other is taken if the list

runs out before any element satisfying the predicate is found. Its grammar rule is shown in
Figure 2.68.

An example program containing this clichi, where the search predicate is PRIMEP, is
shown below. The elements generated by the List-Enumeration are tested by Earliest. If
any satisfies Earliest's predicate (in this case, if any are prime), then the element is given as

output.

89

% %.

e"%

,

(DUUN PRINK-SARCE (L)

(LET ((NIL))

(LOOP DO
* (COED ((NULL L) (RETURN NIL)))

(SETQ 9 (CAR L))

(COED ((PRIKEP E) (RETURN E)))

(SETQ L (CDR L)))))

Information about whether the search succeeded is transferred using attribute-transfer

specifications to the abstract Sequential-List-Search operation so that this operation may be

used as a predicate. If the loop is exited when Earliest's predicate is satisfied, then the

search succeeded. This is specified by having the termination-ce of Earliest transferred as the

success-ce of Sequential-List-Search. Similarly, if the loop is exited when the list runs out,

then the search failed, so the termination-ce of List-Enumeration becomes the failure-ce of

Sequential-List-Search.

Member

The Common Lisp operation Member takes an element and a list and searches for the

element in the list using EQ. If the element is found, it returns the sublist of the list beginning

with the first occurrence of the element, otherwise, NIL is returned. The rule for the Member

plan is shown in Figure 2.69.

The plan for Member involves a Co-Earliest loop plan whose predicate is constrained to be

the partially evaluated primitive predicate EQ. This predicate must be closed with respect to

* the input corresponding to the element being searched for (i.e., the first input to the Member

a.,- plan).

When the predicate is satisfied, the sublist whose CAR satisfied the predicate is returned.
This is specified in the grammar rule by requiring that the output of the Sublist-Enumeration

be the second input sequence to the Co-Earliest plan.

Since Member is a predicate, there are specifications for how to compute its success and

failure control mvironments, similar to those for Sequential-List-Search.

@IbN

12 Constraints:

1 2 Sl 1. SubList- Enumeration, Map, and
Sublist-Co-Earliest co-occur

Enumeration 2. Map's Function is 'car'
3. Co-Earliest's exit-predicat. is 9*q*
4. We is partially evaluated

Member 5. *eqo is closed-wrt its first ars
Map which receives data tlow from input 1

Map Attribute- fransfer:
1. Ce := ce of any of the nodes

3 2. Success-c. := termination-ce of

igno eCo-ealiest 3. Faflure-ce :=termination-ca of
ignreCoealistSubk-nueation

3

Figure 2.69: Rule for Member

The following program contains the Member plan.

(DEFU NY-NUDER1 (UJIN LIST)
(LOOP DO

(COED ((NULL LIST) (RETURN NIL)

((EQ (CAR LIST) ELEN)
(RETURN LIST)))

% ~(SETQ LIS? (CDRILUS?))))

The flow graph projection for MY-MEMBER'. plan is shown in Figure 2.70a. In order for
the Recognizer to recognize Member in it, the flow graph must be transformed to the flow
graph shown in Figure 2.70b.

.' .. 91

%4.%--. A*e,

nul- NL nl-NIL

a) (b)F,,cr() F,

Fiue .0:FowGap a)ad rnsomeclo rap (bo YMME

l- firs null- ~ *%

An Example Involving Truncate and Truncate-Inclusive

To understand the relationship between the plans Truncate and Truncate-Inclusive, con-

sider the following two programs. The first computes the sum of the integers from N to M,

inclusive, while the second computes the sum of the integers from N up to, but not including,

- .. M. The temporal abstraction of SUM-INTERVAL-INC and SUM-INTERVAL into compositions

of loop plans is shown in Figure 2.71. They differ only in that SUM-INTERVAL-INC uses

Truncate-Inclusive, which means M is included in the sum, while SUM-INTERVAL uses Trun-

cate and so does not include M in the sum.

(DEFUZ SUM-IITERVAL-INC (N K)

(LET ((SUN 0))

- (LOOP DO

(SETQ SUN (N SUN))

j-. (COID ((>* N N) (RETURN SUN)))

(SETQ N (1+ N)))))

- (DEFUN SUM-ZITERVAL (I N)

(LET ((SUN 0))

(LOOP DO
(COD ((>- I N) (RETURN SUN)))

(SETQ SUM (+ N SUN))
(SETQ N (1+ 2)))))

-43

-

.4.

..;

-.-.

D-Ri86 421 AUTOMATED PROGRAM EONTOU)MSRH ET im u W/
TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB L M WILLS
FEB 87 AI-TR-994 N889i4-85-*K-02i4

UNCLASS IF IED F/G 12/5 W

EhmmoEEEEEEliE
EEmhEEEEEEEmhE
EhhEEEEEmhEmhE
EEEEEEEohhhhhI
smhEEEEEEEshh

ItIL-25 ll I .4 1I 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

I N) (M) (N) (m)

TIruncate- Tgor runcate igno~re
ncILuSiV

isL.- SLI is >= A/

SUM-IN IT.RVAI.-INC SUM-INiFRVAI.

Figure 2.71: Temporal Abstraction of SUM-INTERVAL-INC and SUM-INTERVAL

94

I. 9,

2.3.4 Partial Recognition

It has been shown how the mechanisms of the Recognizer and the extensions made to the

parser have made possible the recognition of cliches in programs by parsing. However, the
Recognizer cannot always perform program recognition by reducing a program's graph to a
single start node. Recognition will in general be partial since programs are rarely made up

'" ~.entirely of familiar forms and data structures. There are usually some unrecognizable parts.

Furthermore, the clichds that are recognizable are not always those on the top level of the

Plan Library. The Recognizer must search for cliches on all levels. Therefore, the grammar
used by the Recognizer's parser cannot always have just one start node type which is induced

by a single top-level cliche. The start types induced by the cliches would all have differing

input and output arities corresponding to the number of inputs and outputs the cliches have.

Recognizing cliche, on any level of the library amid unrecognizable sections of a program
is done using four techniques:

1. Allowing any nonterminal in the grammar induced by the Plan Library to be treated as
a start node type of the grammar. (The grammar may have more than one start node
type and the types may have differing rities.)

2. Gathering information from all successful parses and subparses, even if the top-level
parse that generated them fais.

3. Ignoring unfamiliar parts of a program's graph and parsing the remaining subgraph.

4. Varying the strictness of the constraint language used in the grammar.

The first two techniques are made possible by minor, yet powerful, modifications made
to the parser. Due to the first, the input to the parser is now the graph to parsed, the
grammar, and a list of start types for that grammar. The second technique is made possible
by incorporating dynamic programming into the parser. Not only successful parses, but all
parses ever started are recorded along with their outcomes. This technique serves a two-fold
purpose. First, because successful subparues are recorded, the Recognizer doesn't require a
complete parse in order to recogize something. Second, dynamic programming prevents the

same parse from being attempted more than once. Thus the Recognizer may work more

'., efficiently.

. . 6 J* 4. LI -%4 .

The last two techniques listed above (numbers 3 and 4) will be described in detail in the

next two sections.

Partial Parses

In order to find familiar features in the midst of unrecognizable parts of the program, the

unfamiliar parts of the program's graph must be ignored and the remaining subgraph parsed.

Since the unrecognizable parts cannot be identified before parsing is done, the Recognizer

systematically ignores all parts of the program's graph in turn. It does this by computing all

possible initial positions of the parser's read head and starting a parser at each. Because the

parser's read head scans a graph from left to right, any section of the graph which is to the

left of the initial head position will be ignored by the parser.

The computation of all possible initial head positions is performed in two stages. First,

all leading edge cutsets are computed. These are sets of edges which cut through a graph,

separating it into two pieces. In connected flow graphs, these correspond to cutsets in the

conventional sense that they are a minimal set of edges which separate a graph into two
connected components. Leading edge cutsets are therefore generalizations of cutsets to the
type of flow graphs used by the Recognizer. Formally, a leading edge cutset is a collection of

edges which have the following restrictions:

" all edges in the set point in the same direction

" any path from the input edges of the original graph to its output edges must contain
exactly one of the edges in the leading edge cutset

* the edge set is minimal in that no proper subset of the edge set obeys these restrictions.

For example, the graphs in Figure 2.72 show all possible leading edge cutsets through a

graph. (The method for computing these will be explained shortly.) The reason they are
called "leading edge" cutsets is that they are each to be treated by the Recognizer as input

edges of a subraph. Everything to the left of them is ignored by starting parses at each
cutset. This is dome in the second phase of computing initial head positions.

To start parsers on each leading edge cutset, all permutations of the edges of the cutset

must be produced for each start node type. Each permutation is used as the initial read head

96

Il, IN1 ZC

&I

4d

Fiue27:AlPsileLaigbg ust

r300
9?

-a ci~ a c u~

Figure 2.73: A Possible Read Head Position in a Flow Graph

position of a parser. That is, it is the set of edges which are "seen" by the parser as the
leftmost edges of a graph to be parsed. Each permutation must be of size equal to the number
of inputs to the corresponding start node. This is because the start node type must have the
same arity as the input graph in order to match with it. Therefore, if there are n edges in the
leading edge cutset and the input arity of the start type is k, then all k-permutations of the
n edges on the leading edge cutaet are computed.

Since the grammar may have many start types, these combinations of edges in the edge-set

must be generated for each start type. (For efficiency, the start types are grouped according
to input arity so that combinations of any particular size are only generated once.)

Generating Leading Edge Cutets

The restrictions on leading edge cutsets arise from the way the leading edge cutsets are gen-
erated, that is, by using the graph reading mechanism of Brotsky's parser. The parser reads
nodes by advancing over any one of the nodes all of whose edges are on the current head
position. It never reads a node unles all of its predecessors have been read. A node's pre-
decessors have been read if all of the node's incoming edges are in the current head position.
For example, in Figure 2.73, the read head is positioned before the nodes a, b, and e. It may
step over either a or e, but not over b because not all of b's predecessors have been read yet.
By choosing "any one of" the nodes on the head position, the read head picks an arbitrary
path through the graph. In order to And all leading edge cutsets, the Recognizer must take all
possible paths that the read head could take. At each step, the edge set of the current read
head position is produced as a leading edge cutset.

The leading edge cutset generator starts positioned to the left of a graph's minimal nodes
(at the left-fringe of the input graph) as is shown in Figure 2.74(1). The parser's read head

98

Y O

a, ci

1%b bY

(9) (4)

Fiue2.4 tesIvovdinGnraigAULain de uet

-. 300

Sb

(4)

selects one of the minimal nodes to scan. It is allowed to do so if all of the node's incoming edges

are in the current read head position. (See Figure 2.74(2).) The generator then recursively

generates the leading edge cutsets of the subgraph whose minimal nodes are those to the right

of the current head position (as in Figure 2.74(3) - (5)).

The generator next pretends that the node wasn't scanned (i.e., it "unsteps" the read head
back across the node just scanned) and scans one of the other steppable -minimal nodes. (See

Figure 2.74(6).) It does this until all nodes have been tried.

Because the generation of leading edge cutsets is recursive, there may be an overlap in the
cutsets made. In order not to generate duplicate cutsets, the cutsets generated are cached so

that when an cutset is made that has already been reached by a different path, the generator

will not perform the recursive call of itself on that cutset. In Figure 2.74, step 6 goes directly

to step 8 because stepping over node b gives the same leading edge cutset as in step 3.

An Example

As an example of recognizing a clich6 by starting parsers everywhere throughout a program's

graph, consider trying to find the Sum-of-Square cich6 in the following code:

(Dm 13 n(T)
(C (+ (SQUAU (A))

(sQuAul (N Y)))))

The flow graph projection of the plan for the function F3 is given in figure 2.75. The leading
edge cutsets generated are also shown in F3's plan. The rule induced by the Sum-of-Squares

plan definition is given in Figure 2.76.

In order to recognize Sum-of-Squares, in the plan for F3, either the Sum-of-Squares non-

terminal must be given as a start type or it must be used in the right-hand side of some higher

level clichi which is also recognized in F3 (enough to see Sum-of-Squares). If it is a start type,

Sum-of-Squares will be found when the initial head position is the set of the two edges coming

into the nodes of type suare (the leading edge cutset marked with an asterisk). The parser
"sees" the input graph in this case look like the graph in Figure 2.77. The recognizer for

Sum-of-Squares will complete and the Recognizer will record the derivation. Sum-of-Squares

will be recognized even though the parse will ultimately fail when the read head scans C and

no recognizer is active to account for it.

100

Figure 2.75: F3's Flow Graph Projection and Leading Edge Cutsetn

1 2 2

Sum-OI-
Squares

3

Figure 2.76: The Rule for Sum-of-Squae.

101

I vg 11

Squar Square

Figure 2.77: Part of the Flow Graph for the Function F3

Conditional Recognition

So far, three techniques have been set forward which facilitate the recognition of cliches even
though the program may not be reducible to a single nonterminal node. In particular, the

Recognizer performs partial recognition by allowing nonterminals on all levels of the grammar
to be start types, by recording all parses and subparses that succeed even if a higher level parse
fails, and by starting parses all over the input graph. This section describes how recognition

may be achieved in a fourth way - by having loose constraints on the grammar rules.

Oten a clich,'s computation may be performed in code only under certain conditions. For
example, consider the following program.

(DIN SOIMMM-F (Y)
(3

(COlD ((>= I Y) (A 1))
(T (C Y))))

If the rule shown in Figure 2.78& represented a clichi to be found, the clichi would be
conditionally recognized in the program's flow graph (shown in Figure 2.78b). The condition

it is recognized under is that x _N y.

As another example of conditional recognition, the program SOMETIMES-LENGTH (shown
below) computes the length of the list L iff L has fewer than 100 elements.

102

V ,OW

A >

B null-
test

A C

B

(a) (b)

Figure 2.7& Rule for F Ad Flow Graph for SOMETIMES-F

102

(D03 NONITU-LEIGTZ CL
(Lrr MCI 0))

(LOOP 0o
(COND ((MLL L) (ASTURn)))
(SiE L (CDR L))
(IF III< 1 9)

(sa Z (1+))
(RUIN 1)))))

The strictness of the rule.' constraints controls how much can be recognized conditionally.
The clich6 "F" wouldn't be recognized in SOMETIMES-F if there were a constraint that A
and B co-occur. Similarly, List-Length would only be recognized if the loop exit predicate for
List-Length had g in the costraints on its success and failure control environments. If they
required that success-ce co-occur with the outside-ce of the loop and failure-ce co-occur with
the feedback-ce, then the List-Length clch would not be recognized.

By varying the strictness of the constraints, the Recognizer can be made to conditionally
recognize clichis. The strictness may be varied with how the Recognizer is applied. For
example, in a maintenance system, it would be useful to be told that List-Length is computed
under certain conditions. However, in a programming tutor, if the program doesn't always
perform the required computation, it shouldn't be recognized as doing so. The conditions
under which the computation isn't performed are treated as causing bugs. In order to correct
the bug, the constraints that are violated must be made to hold. Further research is necessary

on the uses of this feature.

104

1,,

2.4 Documentation Generation

Because of the variety of ways clichs may be recognized, the Recognizer uses a heuristic
approach to generating documentation. Cyphers [8] shows how explanations can be attached
to clich6s so that when they occur in a program, automatic documentation can be generated
based on the programming knowledge they contain. Each schematized textual explanation

fragment contains slots which may be filled in with names of subclich6s or variable names used
by the clich6d computation. The documentation module which is used to demonstrate the
Recognizer's output takes basically this approach. It gives as output an English description
of the parse trees generated by the parsing process. For each high level clichi recognized, the
system generates a hierarchical, textual description of the code containing the clich6 and any
subclich~s involved. If any data abstraction clues are associated with the rules, they are also

given.

When the clich6s recognized are disjoint, the documentation lists the cliches and their
descriptions. If they are connected by data flow with no unrecognizable sections in between,
then they may be seen as being composed. This occurs most frequently in the analysis of loops
where a program is temporally abstracted into a composition of loop plans. In this case, the
documentation reflects the composition by separating the names of ciches by the word "of"
and listing them in the order of how they are composed (i.e., from output up to input). An
example is "a Sum of a Filter of a Vector Enumeration" which is the description of a program
which has the temporal abstraction shown in Figure 2.79.

Because the parse trees generated in parsing may not always account for the entire pro-
gram, there are a few heuristics used in producing the documentation. These heuristics

, /; determine for example whether the program can be described as being an instance of a clich6

or as merely containing the clich6. In particular, when there are unrecognizable sections of
code, i.e., the clich6s found only account for part of the program, and the output of the pro-

gram comes from one of these unrecognizable sections (i.e., it is not the result of some clichid
computation), then the documentation produced says that the program "contains" the clichi.
On the other hand, when there are no unrecognizable sections of code or when the results of

any unrecognizable sections are only used as input to clich6s, the documentation says that the
program "is" an instance of the clich or composition of cliches found. For example, compare

105

'a%

I Vector

Enum

Filter

IU.

Last

Figure 2.79: A Sum of a Filter of a Vector Enumeration

106

*d
IC I r.

I

~, .~.the two functions and the documentation produced for them in Figure 2.80." The function

,.-. determines whether the square of the input HYPOTENUSE is approximately equal to the sum
of the squares of the two input sides SIDE1 and SIDE2. Because RIGHTP returns the result of
the test, it is described as being an instance of an Equality-Within-an-Epsilon, even though
there are unrecognizeable sections of the function's code. On the other hand, the function
FUNNY-RIGHTP performs the same test on its inputs as RIGHTP does, but it also condition-

ally returns the ratio of SIDE1 and SIDE2 depending on the result of the test. Because the
output of the Equality-Within-an-Epsilon clichi is not given as the result of the function, the
function is described as containing the clichi.

A feature of the Documentation Generator that is displayed in the documentation given
in Figure 2.80 is that if the output of an unrecognizable subgraph is used as input into a
clichi, a Lisp expression is produced which corresponds to the non-clich d computation and

* ~ which is used in the schematized text. For example, in the function RIGHTP, the computation

"(. 0.02 HYP-SQ)" is not recognized as any clichi and therefore appears in the documentation
as a Lisp expression. That is, the comment contains the phrase "Epsilon is (. 0.02 HYP-SQ)".

"The function RIGHTP is taken from Problem 3-9 (p. 42) in (47].

107

...
-..

VI- -*%

=.. %

.1''4.

RIGETP is an Equality-Vithin-an-Epoilon of a Square of

DYPTUSI and a Sum of Squares of SIDII and SID82. where
Epsilon is (s 0.02 IYP-SQ).
The Equality-Vithin-an-Epeilon. determines whether the output
of the Square and the output of the Sun of Squares differ by
1..e than (* 0.02 IYP-SQ).

(DI 1103WP (BYPOTUNUSE SIDE1 SIDE2)
(LiE ((EYP-Sq (0 NYPOTUNUSZ a M TUNUSE))

(DIFF (- RIP-SQ
(+ (s SIDE1 SID2l)

(o 51DE2 SIDE2))))

(DELTA (IF (PUSP DIFF) DIFF (lEGATE DIFF)
(UDELTA (o 0.02 (* UTP-Sq)))))

FUNUY-IGITP contains an Squality-Vithia-an-pion of a Square

of NYPTUUSE and a Sum of Squares of SIDEI and SID32. where
Epsilon is (s 0.02 31P-SO).

The Equality-Vithin-an-Epeiloa determines whether the output
* of the Square and the output of the Sum of Squares differ by

p~. loe than (0 0.02 EYP-Sq).
(DEFUN FUI-RIGRTP (UTOT I SIMR SIDE2)

(LETe ((DIP-SQ (o NYPOTUUSEZ EYPOTUE))E
(RATIO (I 103 SID92))
(DI,, (- lP-SQ

(+ (o S1031 51031)
(o SID22 3102)

(DELTA (IF (PUMP 0177) DI?? (lMATS DX??)))

(IF (<in DILTA (o 0.02 (s 3TP-SQ)))

Figure 2.80: Program for Testing Whether a Hypotenuse and 2 Sides Form a Right Triangle

108

PC, P Pill

ET-NENBER is a Set Nombership operation.

It determines whether or not ELENENT is an element of the set

STRUCTURE.

The set is implemented as a Hash Table.

The Hash Table is implemented as an Array of buckets, indexed

by hash code.

The buckets are implemented as Ordered Lists. They are ordered

lexicographically. The elements in the buckets are strings.

An Ordered List Membership is used to determine

whether or not ELMENT is in the fetched bucket, BUCKET.

(DEFUN IT-EMBER (STRUCTURE ELEMnT)
(LET ((BUCKET (AIrF STRUCTURE (EASE ELE MET)))

(LOOP DO
(IF (NULL BUCKET) (RETURN NIL))
(SETQ ENTRY (CAR BUCKET))

(COND ((STING> ENTRY ELEMNT) (RETURN NIL))
((ENTRY ELEMNT) (RETURN T)))

(SETQ BUCKET (COR BUCICET)))))

Figure 2.81: Code for HT-MEMBER and Documentation Produced by Recognizer

2.5 Examples Demonstrating All Capabilities

The examples shown in this section each make use of many of the Recognizer's capabilities.
They are intended not only to show what the Recognizer can do, but also to help define its
limits. This will be useful in discussing improvements and areas of future work.

The Introductory HT-MEMBER Example

Figure 2.82 shows the grammar used in analyzing the program given in the introduction to
this chapter (and shown again in Figure 2.81 along with the documentation generated by the
Recognizer). It displays most of the aspects of recognition already discussed, including the
use of two partially evaluated functions in the Truncate and Earliest plans.

Many of the rules have annotations attached to them which uncover design decisions about

109

IV

11 11 1110 'IN A 1M

1 2 1 2
Antatlems:

Set- Hah- 1. 'The set is implemented as a Hash Table'

Member Table- 2. 'determines whether or not [input 21 is
embe an element of the set [input i]"

Attibute-Mlansfer:

2 1.transfer all attrib's to corresponding attrib's

Table- Buk1. fale-co of ayuf-ce noduet-eme

I Fetch- 2. success-ce := succes-ce of Bucket-member

S3. fa~ure-:= ftilure-ce of Bucket-member

Membe

1 2 Attribute-Mransfer:
1 2 1. Ce:= ce of -are-

Fetch- Annotations.:
Bucke 1. 'The Hash Table is implemented as an Array

-of buckets, indexed by hash-code."

1 3 IAttrlbuto- 'andfer:

1 2 1. transfer all attributes to corresponding attributes
Annotations:

Bucet-Ordered. 1. 'The buckets are implemented as Ordered Lints*Buckt-"= List- 2. If ordering-predicate is 'string>*, thenMembe MThey are ordered lexicographically."

3. 'The elements in buckets are [type of domain
2' of ordering predicatei]

1 2 4. 'An Ordered List Membership is used to determine

SLtwhether or not [input 21 is in the fetched bucket [input 11'
1 2 n

Ordered-Constraints:
Ordere- ore 1. all co-occur

Member acat 2. Truncate's Predicate is a binary relation
3. T unc's Pred is closed with respect to [input 21
4. Earliest's Predicate is partially evaluated 'equal'

E~l.~ ignore 5. Earliest's Pred. in closed w/ respect to (input 21EarliestAttrbute- --ran m-er:
1. Failure-ce = (term-ce of List-Enum[+ (term-ce of Trunci

, 2. Success-ce :- termination-ce of Earliest
3. Ordering-predicate :- Truncate's predicate
4. Ce := Truncate's ce

P., Figure 2.82: Grammar for Analyzing HT-MEMBER
SP110

"WI I

Set-Member

Hash-Table-Member

hash Fetch-Bucket Bucket-Member

a] Ordered-List-Member

List-Enumeration Truncate Earliest

Sublist-Enumeration

Map strinV equal

Generation Tricate I
rnull ca

Figure 2.83: The Pane Tree for HT-MEMBER

how particular data objects are implemented. Note in particular that the type of elements in
the ordered list is figured out by identifying the domain of the ordering predicate.

A further point to note is that in the attribute-transfer specifications for Ordered-List-
Member, the failure-ce of the left-hand side non-terminal becomes the sum of the termina-
tion-ces of List-Enumeration and Truncate.

The parse tree for HT-MEMBER is shown in Figure 2.83. An upward double arrow (f) con-
necting two nodes of the tree signifies that the rule which expressed one in terms of the other
was induced by an implementation overlay. For example, there is a double arrow from Hash-

- Table-Member to Set-Member. This means that the overlay Hash-Table-Member>Set-Member
induced the rule which takes the nonterminal Set-Member to Hash-Table-Member.

~111

0NO

MOO

[List-

Average

List- Comstraint:
Fnumeratio 1. List-Inuncration and Sum co-mcur

SlmL Amtribut-IrjnsfrSum 1. Cc: = cc uf L.ist-Fnumcratioi or Sum

2

t2

Figure 2.84: Rules for List-Average and Sum-Elements

N List Average

The List-Avernge plan (shown in Figure 2.84) shows the ability of the Recognizer to recover
the design of a program even when parts of the implementations of two distinct abstract
operations overlap. The List-Average clichA will be found in programs like the one shown in

Figure 2.85.

However, a good programmer, realizing that the separate coding of the Cdr-Generations
and loop terminations is inefficient, will optimize the code so that they are shared among the
Sum-Elements and List-Length computations as in the code in Figure 2.86.

Even though the grammar for List-Average does not explicitly share the Cdr-Generation
and the exit predicate, List-Average will be recognized. The parse tree of the program is not

strictly hierarchical. (See Figure 2.87.) In it, there are two nodes, the exit predicate (NULL)

112

--0"-,""

(OEMU AVZIRAGI-LI WL

UI (SU-911-KLUSl L)

(LZST-LUS? L)

(DOEM SUN-UP-KUUTS WL

(LIT ((SW 0))
(LOOP 0O

(COND ((NULL L) (ITUII SU))

(SUTQ SUN C* (CAR L)SN)
(SITO L (COX L))

(DWMULST-LUST! WL

(LET MC 0))
(LOOP DO

(COlM ((NUL L) CITUU M))

(SIT= L (CD& L)))

Figure 2.85: Unoptimized Code Containing List-Average

(DM AVUMAG-LIST2 CL)

(LIT ((SUN 0)
(COUUTU 0))

(LOOP DO
(COED ((MILL L) (31103)))

(5319 COUUT (1' COMMT))
(511 SUN C+ (CARL) SUN))

(5119 L (C1 L))

.1*. (U SUN COUUTU))

Figure 2.86: Optimized Code Containing List-Average

113

-Iw

List- verage

Sum-E ents List- ngth

"I Sip List-Enu eration

+ Mr Sublist- numeration

car Truncate G ation Co-Earliest Count

_ I..+

%',u

'a, Figure 2.87: Pane Tree for AVERAGE-LIST2

and the Cdr-Generatioa, that are shared.

Arbitrary Composition of Loop Plans

Because the Recognizer may use any non-terminal as a start type of the grammar and because
parses are started everywhere in the program's graph, the Recognizer is able to find basic loop
plans in a program even when the program does not contain a specific higher-level clich6
known to be implemented by the particular composition found in the program. For example.
in the following function, the Recognizer will find the cliches: Sum (which accumulates the

elements of a sequence by adding them together), Filter (using the predicate PLUSP), and
Vector-Enumeration of the first N elements of the vector V, where V is implemented as an

array.

S. 114

-,.-p%

a' # j~'~ P J~.e~S -.. aN& .;

(onst rimits:

Count~ 1. u,1-1 fclcds predicate is):=
U~t~flt2. > =is piartiall~y evaligatd

3. > = is Closed W/ respect to
Vector- its secondd .urg which receives

Enumcruition -daw~ 11ow froin (input 2>

First N4. Maps Function is "aref"
irtNTruncate ignore 5. "Arct- is patilly cvidtuawd

6. "A rc I" is closcd w/ respect to
its first itrg which rcccivc%
diitii 11OW front <input 1)

7. Count. Iruncatc. iind Kip co-ccur

ignore Map Atrihute-rnsfr
1. Cc cc of Orny flodc

3

Figure 2.88: Rule for a Vector Enumeration of the First N Elements of a Vector

(DEFU POSITZVK-S=u (Y 1)

(LET ((SUN 0) (1 0)
(ELENIT IL))

(LOOP DO
(COlD (0.- 1 I) (RRTUal SUN))
(srrq ~If I (ARV V M)
(IF (PLUS? ELUMII)

(3ETO SUN (# SUN SEMfI?))
(S3TQ 1 (1+ MM))

The rule for Vector Enumeration of the first N elements of a vector is shown in Figure

2.88. It is composed with a Filter and a Sum followed by a Last, as is shown in Figure 2.89.

* The documentation generated for this function is:

POSITIVI-SUN to a Sum of a Filter of a Vector
Enumeration of the first I elements of Y.

The vector V is implemented as an array.

115

%fMV@4W,10 I 61. T

Vec~tor

Finst N

iliter Id',*i

L ast

Figure 2.89: Temporal Abstraction of POSITIVE-SUM

116

4W

Figure 2.90: Flow Graph Having the Structural Form of a Generator

Waters' loop analysis algorithm ([41,42]) has this same ability to decompose a loop into
the plans of which it is constructed. (The example just discussed was taken from [42].) The
difference between Waters' analysis technique and that of the Recognizer's is that Waters
groups together operations in a prograxm into maximal segments based on control flow, while
the Recognizer finds single operations that display the functionality of temporal fragments
based on data flow. In Waters' system, arbitrary subgraphs may be bundled up into a loop
plan, rather than just single operations. For example, the flow graph shown in Figure 2.90 has
the form of a Generation. However, it will not be recognized as such because the Recognizer
cannot group together the two operations a and b into the single composed operation a o b.
In analyzing the code, Waters' algorithm would group these together as a Composition. In
this way, the Generation plan would be recognized. The Recognizer must be extended in the
future to combine the power of Waters' segmentation techniques with its existing capabilities.
This may involve adding grammar rules like the following.

Cornstraint:
F 4a" sad 'b" co-occur

Attribute-M.anfrd,:

F :- composition of se and 6b"

The next example (Square Root) shows how this may be useful.

,.
,.

117

%r)r Xlw " r " r . " w X -W"w",- w - q?

1Camtraintat

Generation 1. Generation and Earliest co-occur
2. Gem's Fuanction is am improvement

Succesive- function
Approx 3. Earliests. predicate is a

Earliest crtro o ovrec

2 Attributo-Manfuw:

1. Cer:- ceoft either mode
2. Improveumeat-Manctiom : Gem's Fnmctiom
3. Covergec.criterioa :- Earliest's Predicate

Figure 2.91: Rule for Successive-Approximation

Square-Root

The following code computes the square root of a number using Newton's approximation
method. The Rlow graph for this program is shown in Figure 2.92.

(DUDE NY-SQ&T (3)

(LET ((APPBOZ 1))
(LIMP DO

(COD (((C (AmSC-C APPROK APPROX) 9))

0.0001)
MTURNu APPROM)

(T (SRQ hPPROZ

U(* C APPROR Ul I APPROI)

2.0)))))))

This function can be seen as an instance of the Successive-Approuimtion clichi in which
a sequence of values are generated and then tested to see if they are close enough to the
correct answer. The rule for Successive- Approximation is shown in Figure 2.91. An instance
of it occurs in MY-SQRT. In this instance, the generating function for its Generation is the
function for computing an improvement to the current approximation, i.e.,

(/ (+ APPWZX (/ I APPIOZ)) 2.0).

Earliest's predicate is a criterion for convergence, i.e., that the square of the approximation
* be within an epsilon (0.0001) of the input number. In order for the Recognizer to recognize a

118

1-161%

114 DIM.'*

~~X

Figure 2.92: Flow Graph for MY-SQRT

119

ou

S partially
evl ua1sted

+
/ S

~Figure 2.93: Part of the Flow Graph for MY-SQRT

Generation and an Earliest clichk (and therefore a Successive-Approximation), the grammar
_ must contain specific rules for finding the improvement step and criterion for convergence.
..2 Otherwise, the Recognizer will not be able to bundle up the appropriate subgraph into a
. generating function or an exit predicate.

:: The Recognizer might be made more powerful by being able to recognize the structural
-,, form of an arbitrary subgraph as being that of a specific loop plan. This way, the subgraph
~shown in Figure 2.93 would be recognized as a particular generating function.

~In order for this to be useful, however, the Recognizer must also be able to prove that
- the subgraph bundled up performs the appropriate function. The Generation in Successive-

Approximation requires that the generating function produce a new value on each iteration,
based on the previous value. The Generation of improvements and the exit predicate of the
Earliest plan when used together must be proven to converge. The Recognizer, therefore,
needs to incorporate help from outside sources, such as the user, a theorem prover, or systems
which contain domain specific knowledge (e.g., Macsyma).

120

OI
i/
wI

: / p~tI4 .0
I MI

Chapter 3

Limitations and Future Work

There are quite a few areas of research opened by both the limitations and the capabilities of
the Recognizer. The first part of this section discusses work which needs to be done to improve
the Recognizer. The second part discusses some areas of research where the Recognizer may
be applicable. The third describes how it may be incorporated into software development and

maintenance tools and into a programming tutor.

3.1 Limitations of the Recognizer

The Recognizer, like most experimental systems, has much room for improvement. Many of

its limitations have been touched on briefly throughout the earlier sections. These will be
discussed in more detail in this section.

Types of Programs Analyzed

The Recognizer is able to recognize clichis in programs which contain nested expressions,
conditionals, single- and multiple-exit loops, and some data structures. The Recognizer cannot

handle any side effects, other than assignment to variables, nor can it analyze programs
containing recursion or arbitrary data abstraction. Future work is required to allow the

Recognizer to handle these features.

121

Side Effects

The only side effects which may occur in programs analyzed by the Recognizer are assignments

to variables. This is because the Flow Analyzer has built-in knowledge about what it means

for an assignment to occur. It is able to show the net data flow as a result of an assignment.

However, in order to understand side effects, such as those which occur in the use of RPLACA

and RPLACD, the Flow Analyzer must be extended to correctly represent the net data flow.

(See [28,37].) This may involve its interaction with program recognition.

Data Abstraction

By using rules derived from implementation overlays, the Recognizer is able to recognize the
use of certain standard data structures, such as sets, lists, and hash tables, and is able to

explain how they are implemented in terms of each other. However, in order to analyze

programs which use aggregate data structures, the Recognizer must be able to destructure

C' the data objects. The problem is that plans which act on aggregate data structures take the

data structure as input, but must decompose it in order to act on its parts. For example,

the clich6 Push acts on a stack which consists of a collection of values (the "baser) and an
index into them (the "lower"). The plan for Push is shown in Figure 3.1. If the stack were

implemented as an array, for example, the subplans Bump and Update would be implemented

as DECREMENT and ASET, respectively. In the plan, the input stack must be seen as two

separate data objects. In the current system, there is no way to represent the destructuring

and aggregation of the components of a data structure. However, the mechanisms for viewing

4 programs from several points of view may be helpful in providing this capability in the future.

Recursion

The techniques employed in the analysis of loops are expected to be useful in analyzing

programs containing recursion. The same types of feedback correspondences must be recorded
between the inputs to a recursive program and the inputs to a recursive node. In addition,

output correspondences must be maintained which show how the output of the program relates

to the output of the recursive node. For example, the recursive program COPYLIST which
copies a list is shown with its flow graph in Figure 3.2. (The correspondences are indicated

by subscripted asterisks.)

122

N0~~~~ 4 : ''\

b~ise lower

'42 bump

update

S base lower

Figure 3.1: The Plan for an Implementation of Push

123

I.43%

(DIMU COPYLIST WL
(LAB1LS ((IUAL-COPYIST WL

(COED ((MILL LQ NIL)

(T (CONS (CAR L)
(IUTUNEAL-COPYLISr (CDR L)))))

(IITEUAL-COPyLIST L))

'Nil.

ciniles ia caies thIIil.a

Figure 3.2: COPYLIST Program and Flow Graph

124

A problem with recursion which doesn't arise in analyzing loops is that the arity of the
recursive node in a program's flow graph might not match the arity of the node in a rule
for a recursive clichi. For example, suppose the COPYLIST flow graph were being searched

for in the code shown (along with its flow graph) in Figure 3.3. Because the arity of the

recursive node in the COPYLIST flow graph doesn't match the arity of the recursive node in

the COUNT-AND-COPYLIST flow graph, the COPYLIST clichi will not be found.

Taking the approach of removing the recursive node from the graph (which is how this
problem is avoided in loops) is not helpful. The recursive node is what connects the rest of
the program's graph following the recursive call to the part of the program's graph before the

recursive call.

A possible solution to this problem of arity is to apply transformation rules which allow
* the recursive node to be seen in a different way. For example, Figure 3.4 gives two possible

.-.- ways to view the recursive node in COUNT-AND-COPYLIST. The first will allow the Copylist
clich6 to be recognized. The effect the transformation has on the input graph is to separate
subgraphs which do not depend on each other into two distinct operations: one counting and

the other accumulating the elements of a list. The transformed program is shown in Figure

3.5. This transformation is similar to the type of analysis Waters ([41,42]) does in pulling

augmentations out of a loop.

Additional study is also needed to discover the important control environments in the

'body of a recursive function and to determine the relationships among them.

Size of Programs Analyzed
The Recognizer is able to gain a deep understanding of small programs. It needs to be extended

in many ways in order to be able to deal with larger programs. The present system was not
written with efficiency as a main goal. There was a constant struggle against the complexity
of the problem. Therefore, techniques were implemented in straightforward, rather than

cleverly efficient ways. Although some optimizations (such as using dynamic programming
* **: ' and suspending and restarting parses) were introduced, there are other areas which need to

be made more efficient.

The current system flattens the entire program graph by open-coding all subroutines (ex-
cept recursive ones) inside the bodies of their callers during macro-expansion. However, selec-

125

. %

.0 ONr %B e _!*4 0

(DIMN COUIT-AID-COPYLIST CL

(LABELS (CZTERNAL-CC C L ENOTE)
(COED ((NULL L) (PRINT LENOTR) NIL)

CT (CONS (CAI L)

(INTERNAL-CC
(CDR LQ

(1+ LENGTI))))
A (INTERNAL-CC L 0))

(L) (LENCTH4)

Nil.

Figur 3.3 COUNT. AN D-CO PYLIST Program and Flow Graph

* 126

%

12 1 2

Figure 3.4 Transforming a Recursive Node

coiNls

Figure 3.5: Transformed Flow Graph for COUNT-AND-COPYLIST

127

!Jll0

Z Z

tive expansion may be done by translating each definition of a subroutine into a transformation
rule. The rule's right-hand side would be a single node with the subroutine's name as its type
and the plan for the body would be the rule's left-hand side. A program which calls the sub-
routine would have a node whose type is the subroutine's name. An expansion of this node
into the subroutine's body may be performed if more parses were desired. Which subroutines
to expand and when to expand them must be guided by a higher level control mechanism.
This feature may be helpful when flattening an entire program is impractical because of size.

Another optimization is to provide heuristics to cut down on the number of parses gener-
ated. They also may be added to direct the parsing to specific locations in the graph where
a certain cliche is more likely to be found or which may be ignored.

Other Psychologically Valid Models
The Recognizer uses parsing as a model of how people understand programs. There are

other valid psychological models as well (e.g., [2,40,46]). People use a variety of other methods
j for determining what a program does and how it does it. For example, besides analyzing code,

it helps to be able to "play" with it, i.e., run some test cases and see what it does. In addition,
any documentation surrounding the code may be helpful. It may be useful to construct a model
of how people monitor the behavior of code while trying it out or a model of how people glean

information from documentation and connect the documentation with the parts of code that
implement it.

In the future, it might be useful to combine systems based on several theoretical models
in a hybrid system which more closely emulates the understanding process of people.

User Interface
The Recognizer's user interface may be enhanced by a variety of features, including the

following.

" By providing automatic translation from a library clich6 to a rule or from code which
defines the clichk to a rule, entering rules into the grammar may be made easier.

" Rules which use constants may be given as input and the grammar may be automatically
processed to incorporate the constants into the functions that use them. This would also
involve automatically generating the transformation rules needed as a result.

128

%0

.U possible sets of start types of the grammar may be automatically generated. Cur-
rently, trying to recognize non-terminals on all levels of the grammar is done by repeat-
edly invoking the Recognizer with a different set of start types each time. If all sets were
generated automatically, the user wouldn't need to manually invoke the Recognizer more
than once.

* If the Recognizer is used in a system where the code being analyzed is displayed for the
user, parts of the code in which a clichi is found may be highlighted.

3.2 Relevant Areas of Research

Many research areas may benefit from the capabilities of the Recognizer. In particular, the
transformation and parse restart mechanisms have the potential to be useful in a number
of areas. They have been used in the Recognizer primarily in dealing with constants and

partially evaluated functions. As has already been mentioned, they are expected to also be
useful in the analysis of recursive programs and arbitrary data structures and in performing

-selective macro-expansion. In addition, the mechanism opens up new avenues of research into

performing transformations in general, debugging, and learing new cichi as well as common
bugs.

Transformations

The current system typically transforms a single node to another node (as in the case where
"+" is seen as "I+" if one of the inputs comes from the constant 1). However, the transform&-
tion rules allow a nonterminal to be replaced with any subgraph. Transformations may allow
more parses to be found by letting an implementation for one abstract operation be replaced
by another implementation for that operation. For example, suppose an abstract operation
(X) has two different implementations and suppose the clich, to be recognized were Y (as in
Figure 3.6). If the program graph were the one shown in Figure 3.6, then Y would not be
found. However, the Recognizer may let one implementation for X (-E-F-) be replaced by an
alternative implementation (-B-C-), and thus allow Y to be found under the condition that X
be implemented as -B-C- instead of -E-F-. The way that this sort of transformation is made
possible is by letting each rule for X be both a transformation rule and a normal rule. Thus
they may be run either forward or backward.

* 129

I'Y~i r~r, " "-.*,. " . ih ,'_. -. _ -. _,.,.L,- '., .. ,. ..- -,, .".'.".".",- ,.,- ,.,- ,,,- .- , . , ,., .. .,,,.,.,, .''-'1"' " "" '* **':l, ' .. C. " -' .', e.T,~ */,_. ', . .. * * .'. , .* */--, * ,.*-.,4.''

N

(ranmuar: Prograin (raph:

=:>

Figure 3.6: Grammar and Program Graph
I 2 2 I 2 3

I +

+

Figure 3.7: Transformation for the Distributive Law

Transformations are useful in embodying knowledge about a particular domain. For exam-
ple, the transformation in Figure 3.7 gives the Recognizer the distributive law. (The double
arrow (€*) indicates that the rule may be used to transform the graph on either side into the
graph on the other.) It may be used to find the Sum-of-Squares clich6 in the following code.
The flow graph for the code is given in Figure 3.8a. It must be transformed into the graph
shown in Figure 3.8b in order for Sum-of-Squares to be found in it.

• (DOlarl N I FlY-SUN-O7-SQUABU (N A 3)
(0* N (SQUlr A))
(0 N (SQUAll))))

Since transformation and parse restart may occur anywhere in the graph and at any time
after the subgraph to be transformed is found, a mechanism must be developed in the future

130

Lk.%%
AW

GO N

(aI) (h)

Figure 3.8: Flow Graphs for MAGNIFY-SUM-OF-SQUARES

to control when transformations take place and which parses should be resuscitated. It will

probably be based on heuristics. The heuristics may be explicitly stated in a program or
control diagram as is done in [5] (see section on Related Work). Being able to program the
grammar and transformation rules in this way may be useful.

Debugging

The recognition system can be incorporated into a debugging tool, giving the debugger the
ability to both find specific bug cliches and to do near-miss recognition [28]. Most current

debugging systems (e.g., [17,34,35,38]) search the code for specific bug ciches. This is useful
when bugs are treated as explicit entities which have information attached, such as advice or

bug-fixes.

Rich points out the usefulness of near-miss recognition as another debugging technique. In
near-miss recognition, clichis which are almost correct are pointed out as potential errors. For
example, near-miss recognition can point out that a clich6 can almost be recognized except

that

4.1.

131

e a particular operation was not performed or a subclichi was not recognized and therefore
the larger one could not be found;

e the wrong operation was done on the correct data and the right thing was done with its

result;

* arguments to a procedure or function were given in the wrong order;

* the arms of a conditional are switched;

* the return value of a piece of code is coming from the wrong place;

* a superfluous operation is performed within a program fragment in which a clichi was
expected to occur.

An advantage of this type of error detection is that it is more flexible. It does not require
having to enumerate all possible buggy versions of a clich6 in order to be prepared to recognize

and intelligently explain a bug. Error messages can be generated automatically based on the
knowledge of the clichi's behavior and what is being left out or done improperly. This cuts
down on the design cost of the system and gives it more flexibility in dealing with many
different situations.

A number of near-misses can be recognized by collecting those parses which pass graph
matching but fail some constraint. These pares may be suspended temporarily. A reason

for being suspended may be associated with each of them. This would serve as a hypothesis
about what the error is. In order to correct the error, heuristics or transformation rules may

be employed. When they are applied, the suspended parses may restart. If the parses go on
to succeed, then a reason for the bug (i.e., the reason for suspending the parse) may be given

as well as how to fix it.

Program recognition facilitates automatic program modification to fix bugs not only in
performing ner-miss recognition, butalso in using bug clich6s. Bug clichis are "pre-debugged"

in that their fix may be included in the information associated with them. This may be in
the form of an transformation rule which gives the correct version of the cich6.

Shapiro's Sniffer (35] is an example of what is possible using program recognition in de-
bugging. His clich&finders do a kind of program recognition using exact match. Sniffer relies
on the fact that the programs being debugged can be represented using a single clichi with

132

J% % -r %*

little or no variation in the roles and subclich~s. For larger algorithms, subcich~s can be
implemented in a variety of ways. This poses a problem for Sniffer, but it is very easy to deal
with using flow graph grammars. Flow grammars are able to capture several implementations

for the same higher level operation on any level of design. Thus, the generality of the clich&
finders would be increased by the more powerful parsing technique used by the recognition

system.

Learning New Clichis

New cliches may be learned by a system which uses the Recognizer in two ways. In both, a
top level specification for what is to be learned (i.e., what the new clichi is supposed to do) is
given. First, near-misses and their reasons for not being quite right may be collected. Then a
new clichA may be created which is the original (known) clich6 with a slight modification based
on the reasons why the clich6 is a near-miss. Whatever part of the specification corresponds

to the near-miss will be the specification for the new clich6.

*., The second way cichis may be learned is to give the Recognizer a program containing
the new clich6. The Recognizer would identify as much of the program as possible and would
match up the recognized structures with relevant parts of the specification. Any parts of the
program not recognizable as a known clich may be matched up with the remaining parts of
the specification. This may require the use of a theorem prover to prove that an unrecognizable

subgraph actually does what the corresponding specifications for it require. Rich and Waters
first proposed this idea and gave a good example of it in [33]. See [15] for related work on
learning rules about design by trying to understand as much of an example design as possible
and then formulating a conjecture about the unrecognizable sections.

Learning Common Bugs

Bug cliches may be learned in the same way as correct cliches. Near-misses may be recorded

along with the reason the correct clich6 does not occur in the code. Alternatively, the Rec-
ognizer may be given explicit instances of bugs in code and any differences between the code
and the cdich it is supposed to contain may be recorded as the cause of the bug.

Bugs may also be learned without being accompanied by a specification. During debugging,

-" the restart mechanism allows hypotheses to be tested about what is wrong with a near-miss.

133

If a hypothesis holds true (i.e., by fixing it, the clich6 is found), then a type of bug will have
been found.

3.3 Applications of Program Recognition

Automatic program recognition has applications in at least two main areas. First, it makes
*"-i possible a set of new Al-based software development and maintenance tools. Their effective-

ness comes from their deep understanding of the programs to which they are applied. A
second domain in which recognizing a broad range of programs is useful is computer-aided

.9 instruction. This section discusses the ways the Recognizer can be incorporated into software
-a, development and maintenance tools and into a programming tutor.

Intelligent Tools

An analysis system supporting program recognition will be an essential part of the next

demonstration system of the Programmer's Apprentice (PA) project ([31,32,33,44]). The PA
is an intelligent software development system designed to assist expert programmers in all

'a' aspects of programming. Many of the tools provided by the PA will benefit from the use of
a program recognition module. This section points out some of the tools for which program

recognition is expected to be useful.-

Documentation

The ability to recognize familiar constructs in code allows automatic generation of docu-
mentation to explain these parts and how they fit together. This description will reflect a

deep understanding of the program's behavior and structure, rather than simply giving the
program's syntactic features, such as the number of arguments it has.

Verification

Rich [28] discusses the applicability of program recognition to verification. Clich&s can be
pre-verified in the sense that fragments which programmers use over and over usually have

been tested and their behavior is predictable. Because of this, recognizing cliches in code can

increase the programmer's confidence in the code. There is also ongoing work on formally

pre-verifying clches [30,29].

134

A% % %

4,. , .- .. , , -. ,-.¢. , . %.' , , . . , ,.. . --

Translation

Translation is the process of converting a program In one language into another. This is done
usually for the purposes of making the program more efficient (as does compilation) or making

it more readable (as does source-to-source translation). Being able to recover the top-down
-' design tree of a program coded in the source language facilitates the automatic rewriting of

the design in the target language (see Waters [45]). Faust [12] shows the feasibility of this
approach to source-to-source translation in order to relieve the burden of understanding on the

part of the maintainer. He built a prototype system which takes COBOL programs, converts
them to the plan representation, and then abstracts them onto a higher level by analyzing

them in terms of Plan Building Methods (PBMs) [41,42]. The analyzed program is then

converted into HIBOL, a high level language for data processing applications. Faust's system
is limited by the special-purpose techniques it uses to recognize specific features of COBOL

programs. The system would benefit from a general program recognizer which would broaden
the class of programs that may be translated.

Maintenance

The key to being able to maintain a program is being able to understand it. Translation

and documentation generation are two ways discussed so far wherein automatic program

recognition can help increase a maintainer's understanding of code. Another way is that
analysis based on program recognition can generate more informative explanations about
what can be expected to happen if a certain change is made to the code. The explanations
are in the programmer's vocabulary and relevant pieces of code may be pointed out.

135

.V..

-.--.. . ." "-

Computer-Aided Instruction

*. Program understanding is essential in the domain of computer-aided instruction of program-
ming. Besides simply giving a student pre-stored exercises to solve, a programming tutor
must have an understanding of what the student's solution is supposed to achieve. It must
be able to recognize whether or not the student's code does achieve that goal in order to
check the correctness of it and debug it. An important part of this is being able to deal with
great variability in acceptable solutions. The tutor should not be distracted or thrown off
by extra activity, such as print statements, or by bugs which cause sections of code to be
unrecognizable.

This section gives a description of how program recognition can be applied to computer-
aided instruction which is more detailed than the discussions of other applications. This is
because the tutor takes advantage of most of the capabilities of the Recognizer. Two of the
most important are its ability to deal with broad classes of equivalent programs and to perform
partial recognition when parts of the code are not familiar or are buggy. The tutor also uses
some of the applications described earlier. A design for the tutor is given in this section to
show more specifically the role the Recognizer would play in such an application.

Overview

Figure 3.9 gives a block diagram of a recognition-based tutoring system. The tutoring system
interacts not only with the student, but also with the teacher who is developing the curriculum.

The ways the tutor interacts with the teacher are the following. The system allows the
4. teacher to set up exercises for the student to solve. For each exercise, the teacher gives a

problem statement and a grammar defining a top-down design of a typical solution. The
grammar corresponding to the teacher's solution is mapped to the problem statement in the

exercise bank.
The top-level rule given by the teacher simply maps an exercise name to a plan which

implements its solution. However, most of the rules in the grammar specify cliches. These
may be used in several of the teacher's solution designs. Rather than duplicating much of the

grammar rules each time a solution grammar is given, the teacher may maintain a library of
rules which specify clichs and which may be used in several solution designs.

This requires a bottom-up construction of the library. If the teacher adds a low-level cichi
after defining a higher-level one which contains it, the library won't show the hierarchical

136

.5'%

~ 4y1 4 . ~V--.-S **~ .~-r~. ~ 4-,~qv -. -'-n

The Teacher

Top-Down Bug Cliches Problem

Design Statement

Grammnar

VInput Recognizer Grammar

Prograi

Problem Statemen

Vaid Derivations Gramma-ir nvtld

K'Documentatio euge
Generator

Textual ErrMsae
Answer Description of and Advice Problem

Recognized Sections

The Student

~.. Figure 3.9: Organization of the Tutoring System

137

I' 11z

'p

relationship between the two. In order for it to do this, every time a clichi is defined, each of

the existing clichis should be examined to see if the new clichi can be recognized in them.

The teacher is able to automatically define not only programming cliches, but also bug

cliches which contain knowledge about specific programming errors. These bug ciches are

used by the debugger in order to generate error messages and advice. More will be said about

this in the section on the debugger.

The student interacts with the system in the following ways. The tutor gives an exercise to

the student who provides a program as the answer. The system then checks the student's code

by trying to derive it using the grammar describing the teacher's design. It gives a textual

description of the code based on the clichs recognized in it, as well as error messages and

advice on how to fix the code.

Features

Several of the key strengths of the Recognizer are valuable to the tutor in dealing with student

programs. In particular, the canonical representation for programs allows student programs

*., to vary considerably in terms of style, control constructs used, ways of binding variables,

and ways of breaking the code into subroutines. Given a good enough library (something

which is easy to extend and improve), the Recognizer can deal with student programs which

also display great variability in types of data representations used and implementations of

algorithms.

Another feature of the Recognizer which is crucial to the tutoring system is the ability

to perform partial recognition. Starting multiple parses allows parts of the program to be

skipped over and ignored. The student may have irrelevant details thrown in, but these

will not distract the Recognizer. For instance, a student's code may have print statements
sprinkled throughout. It may also do computations on the side, such as counting the number

of iterations so far for debugging purposes or for checking for error conditions in input data.

The system can still recognize the correct solution in the midst of the extra code. Note

that the extra activity must be done in parallel with the correct clich6 operations. If extra

- operations were spliced into the data flow in the middle of a cichi, the code fragment no

longer is recognizable as that particular clich6, and rightly so, since the data flow is disrupted.

138

The Debugger

A key component in the tutoring system is the debugger. In tutoring, the process of finding
bugs, describing them, and either suggesting corr,.tions or guiding students to a correction is
an important part of the teaching process. The application of the Recognizer to debugging in
general has already been discussed. The main capability the Recognizer gives to the debugger
is being able to understand the code and the intended design of the code and to point out
bugs in an informative way.

Knowing the clich&s involved and how they fit together in the design of the program for
a typical solution helps to better explain how the student's code deviates from the correct
solution when a bug is found in the student's code. The student's error is localized in a

.'.,.' specific clichi or role rather than simply saying that the code failed to match the correct
solution altogether. Since the error is localized, it is easier for the system to give a more
pertinent error message and to suggest a fix.

139

... 1 ~ 4,. A-

Chapter 4

Related Work

This section discusses related efforts primarily in the area of program understanding through

the recognition of familiar features. Other work in which attributed graph grammars are

used in analysis is also discussed. The main differences between the Recognizer's approach

to program understanding and those discussed here are in the types of familiar patterns

recognized, the way programs are represented, and the recognition technique used.

In contrast to the language-independent, canonical representation of programs which the

Recognizer uses, many other systems use a programming-language based representation. This

restricts them in the variability and complexity of fragments and structures that can be

recognized because they end up wrestling with all possible syntactic variations and doing

many transformations to twist the program into a canonical form. As programs get larger and

mo:e complex, the variety of ways that higher level operations can be expressed in code and

the number of transformations needed to handle all cases grows exponentially. The problem

of program recognition becomes one of trying to canonicalize the syntax of a program rather

than focusing on its higher level features.

Furthermore, while the Recognizer uses an algorithmic technique, most of the other ap-
proaches rely on heuristics to discover characteristics of the program code. The methods used

do not always guarantee that the structures will be found. If found, there is no higher level

description of how they fit together.

The first section discusses systems that were developed in the context of program tutoring.

The second section is concerned with general program understanding systems. The final

14

Ir4 P LIN 0,1 411-f11:1 J1 V! W

section deals with related work in the area of using graph grammars to analyze graphical

representations of images and conventional control flow graphs.

Tutoring Systems

The MENO-I system of Soloway [38] translates a student's program into an annotated tree

whose leaves are variables and constants and whose nodes are operations. The annotations ex-

plain what roles the variables play in the program. This information is obtained by looking for

certain kinds of statements in the code. For example, a statement like "SUM := SUM + NEW;"

, in a while loop is annotated as a running total assignment statement. A clich6 in the Rec-

ognizer embodies a more general view of a piece of programming knowledge than the specific

features which MENO-II tries to recognize. In order to extend MENO-II, increasingly more

details need to be searched for as programs being analyzed become more complex.

MENO-II contains a component, called the BUG-FINDER, which uses pattern-matching on

the parse tree to recognize in it certain sets of functional characteristics of the program. These

sets of characteristics are also called plans in MENO-I but are more syntactic in nature than

those of the Plan Calculus. Once the BUG-FINDER matches as much of the tree with known

plans as it can, it looks in its bug catalog for common buggy ways of implementing those

plans.

One of MENO-II's weaknesses is that the system is only able to find localized bugs in the
code. It has no idea what the overall code is supposed to do or how it fails to do this. Neither

does it know how to explain a bug in the context of the overall code. This would be avoided

if the patterns to be recognized were more general and if they were stored in such a way that

the interactions among them were made explicit. This is done in the Recognizer by storing

the collection of clich&s in the form of a grammar.

MENO-I1 relies on being able to look at the code and figure out what plans the student was

trying to use. Most of the plan must be present in the code and must be almost correct for it
to be able to pick up small deviations from it. In contrast, giving the Recognizer a grammar

(e.g., having a teacher give the clichs involved in a correct solution) lets the Recognizer know

ahead of time what higher level clich6 should be recognized. This is important when dealing

with possibly buggy code. In tutoring, it is especially important that the recognition system
,-,t, will not:

141

%~: V* 0 V, .6 -' -

" get hung up if no plan is recognizable in the code (it must be obstinate in trying to find
near-misses);

" say code is correct even though the code solves a problem different from that given in
the problem statement (i.e., the code is a correct implementation of the wrong solution);

" work on perfecting the wrong plan by recognizing an almost correct plan but one which
S"won't solve the problem even if it were correct.

Johnson and Soloway's PROUST [17] tries to avoid MENO-II's failings by working bottom-
up to recognize patterns and top-down from the programmer's intentions. This idea of guiding
the analysis with information about the programmer's goals and how they may be achieved
in the program has been adopted, not only by Johnson and Soloway, but also by Ruth [34],
Miller 123] and Genesereth 1141. Rich [28] also discusses how bottom-up analysis by clich6
recognition can be complemented by top-down analysis based on a description of the problem.

PROUST is given an informal description of the program's desired behavior. It then builds
all possible goal structures based on knowledge it has about the relationships between goals
and computational patterns and about how goals can be combined. It looks up the typical
patterns which implement the goals and tries to recognize at least one in the student's code. If
none fit, the system looks for buggy versions of the patterns in the code. The buggy versions

aZ. are pre-stored in a bug catalog along with information about misconceptions a student may
'I have which caused it.

In a tutoring system which uses the Recognizer, the teacher would give a top-down design
, of the program. This is the design that the student (hopefully) intends. This is not enough,

however, to handle all the ways student programs may vary, especially for large programs.
Problems come in when there are several possible goal structures.

Being able to work both top-down and bottom-up is PROUST's greatest asset. However,
it is limited in that the standard programming structures it recognizes are textual in nature.
This restricts their generality.

<-Ai Ruth's system [34], like PROUST, is given a task description and the code to be analyzed
which is supposed to perform the task. It tries to deduce the intended algorithm to achieve
the task. Finding the intended algorithm is done by matching the code against several im-
plementation patterns which the system knows about. The implementation patterns are in

142

.R4 , " -, V ", . i" ' ' .i ."-" ' ' ,' ' ' .' ., . .-. -. .

,,, ,

the form of a set of characteristics about the program (e.g. the number of iterations a loop

performs and the predicate in a loop's exit test conditional).

During analysis, the code is checked for these characteristics. The entire program must be

matched to an algorithm implementation pattern for the analysis to work. This is to be con-

, trasted with the partial recognition performed by the Recognizer. Partial recognition enables

understanding of as much of the code as possible even though cliches may be surrounded by

unrecognizable code or extra computations.

R u th's approach is the closest to the Recognizer's technique in that it uses a grammar to

describe a class of programs and then tries to parse programs using that grammar. A key

difference is that his system treats programs as textual entities. He canonicalizes the code by

applying rewrite rules to it and then trying to parse it as a string. The Recognizer's graph

representation is easier to canonicalize and also is inherently more abstract than code.

In ldnigging. Ruth's technique for finding errors is based on heuristics. His system checks

for -pocific errors. For instance, when expression equivalence is not established, it checks if the

expre -,MLs differ by a constant or by a sign. Ruth's system suffers from a problem similar to

MF%) II i n that it does only local analysis. It takes the task description and checks for pieces

Of rhe (, e which achieve the description's goal. It has no knowledge of the way program parts

interact. It assumes they are independent of each other and that the program's statements

are totally ordered (by control flow as well as data flow), rather than partially ordered (by

data ,l,,p,,ndencies only).

Murray [26,25] presents an automatic program debugging system called Talus which uses

a combination of heuristic and formal methods to debug Lisp programs. The program is

parsd into an abstract frame representation in which functions are represented as E-frames.

The 1ot of the E-frames contain information about the program. For example, some of the

slots contain the type of recursion (e.g., list, tree, or number), the termination criteria, what

reci ri,, calls are made and under which conditions, and the data types of the inputs and

Nle '.I Ii, representation helps abstract away from the syntactic code structure by extracting

..sent ltnt features from the program, allowing greater syntactic variability in the acceptable

studn mI ol ultions. The variability is limited somewhat, however, by the fact that Talus requires

that the student's code be broken up into subroutines in the same way as the model code it

143

" , -
' - -" -. -.. : - .

- .€'%,. %d, 4","_ .. " - .%

compares it to, in order for Talus to be able to debug it. Talus must use transformations to
specify which functional decompositions are equivalent to that of the model program. This

becomes a problem as the program being analyzed gets larger since the number of ways to

break up the program into subroutines increases exponentially.

Another problem with Talus's representation is that because the characteristics of the code

are represented by being listed explicitly in the E-frame, the representation is cumbersome and

verbose. This too becomes increasingly harder to deal with as the programs being analyzed

become more complex. The representation used by the Recognizer is more concise. It is

easy to extract information from it, whether it is stored explicitly in attributes and labels or

implicitly in the structure of the graph.

Talus has a library of stored algorithms. These are represented as a collection of model

functions which carry out the algorithm. The functions are represented by E-franes. In

analyzing the code, Talus looks for a stored algorithm that best matches the student's possibly

buggy algorithm. It uses a best first search to perform the partial matching between stored

.1 functions and student functions. Similarity is measured by how closely the student's functions

are mapped to the stored functions.

Heuristics are then used, based on any dissimilarities, to form conjectures about where bugs

are located and how they should be corrected. Formal methods, such as symbolic evaluation,

case analysis, and theorem proving, are then used to verify or reject these conjectures. The

heuristics used by Talus rely on finding localized dissimilarities between the stored function

and the student's function.

Talus is interesting in that it uses heuristics to locate specific, relatively small parts of

the program where it may be useful to apply some formal method. This report has pointed

out some places in which the effectiveness of the Recognizer may be improved by similarly

incorporating other techniques, such as theorem proving, into the recognition process.

The LAURA system of Adam and Laurent [1] represents programs as graphs, thereby

allowing syntactic variability. flowever, the graph representation differs from the Plan Calculus

used by the Recognizer in that nodes represent assignments, tests, inputs, and outputs, rather

than simply operations, and arcs represent only control flow. This means that data flow is

represented implicitly in the graph structure. Because of this implicit representation of data

flow, the system must rely on the use of program transformations to "standardize" the data

144

., . . ."
cP -

% 5r.r
v-I-..

flow. The Plan Calculus representation of programs shows net data flow explicitly, making

these transformations unnecessary.

The system debugs a program by comparing it to a correct implementation, called the
program model of the algorithm which the program is intended to achieve. This comparison

is done using a heuristic approach. Since nodes are really statements of the program, the

graph matching is essentially statement-to-statement matching. The system works best for
statements that are algebraic or arithmetic expressions because they can be normalized by

unifying variable names, reducing sums and products, and placing their terms in a specific

order.

LAURA performs near-miss recognition in that when a slight deviation exists between
the program model and the student's solution, the difference is corrected. If the corrected

program subsequently matches the program model, then the deviation is reported as an error.

LAURA is limited in that it deals with the syntactic differences between the model and the

student program. The errors found are low level and localized. LAURA's error detection and
correction capability could be made stronger by using a representation for programs similar

to the Plan Calculus.

Laubsch and Eisenstadt [19] use a variation of the Plan Calculus to determine the effects
of a program and then to compare what it achieves with what it was supposed to achieve.

Their system differs from the Recognizer in the technique used to do recognition. Plans have

effect descriptions attached to them so that when they are recognized, the description can be
attributed to the code. Symbolic ealuation helps generate effect descriptions for unrecognized

parts of the code. The actual maching of what the program should do and what it does is

performed in terms of these descriptions. The problem of program recognition has been
transformed into the matching of effect descriptions, i.e., the equivalences of formulas, which

is in general extremely hard.

145

Other Program Understanding Systems

Lukey [20] has developed a theory of program understanding and debugging. His proposed
method of analysis is to segment the program into chunks which are manageable units of code.
(A loop is an example of a chunk.) He then describes the flow of information (or interface)
between the chunks. Next, he looks for debugging clues. These are based on constraints which

- rational, correct programs obey and which are violated by buggy programs. Lastly, assertions
are made which describe the values of the output variables of each chunk. These assertions
are generated in two ways: schema recognition and symbolic evaluation.

Schema recognition associates a known pattern of statements to a description of their
effects on the value of variables involved. The schema recognition process requires that the
specific groups of statements making up the schema be localized. The statements cannot be
scattered throughout the program or in a different (but equivalent) execution order. It also
uses hints to recognize a schema, such as mnemonic variable names which are commonly used
in the instantiation of a schema. This schema recognition is not performed as generally or
algorithmically as in program recognition via graph parsing.

Lukey proposes that debugging be performed using two methods. The first, tentative
debugging, is based on finding debugging clues. The proposed system finds suspicious looking
code and tells the user that there is something wrong with it, but it can't tell what. When
irrational code is found, special transformations are done which are not based on a deep
understanding of the program. The second way debugging is carried out is by comparing the
description of the program with its specification. Any discrepancies are pointed out as bugs.
Since the description is based on assertions derived by recognizing specific patterns and by
symbolic evaluation, it can say what to do to correct a pattern or an expression. It cannot,
however, explain the bug in the context of the program or what effect the bug has overall,
since it doesn't understand the program. It can only say how to treat a symptom of the bug.

9- Fickas and Brooks [13] proposed a system for program understanding based on recog-
nition. The system uses description trees, hierarchical structures generated by programmers
during the design process. In analysis, the program is broken down into program building
blocks (pbbs). Implementation plans decompose non-primitive pbbs into smaller pbbs which
are linked together by data flow and teleology. This is analogous to what grammar rules do
for the Recognizer.

146

A task specification is given to the analyzer as well as the code in order to guide the
understanding process. Hypotheses about the code are formed and verified. The code is
searched for pbbs. They use a language-independent and general representation for cliches
which allows them to be found in different forms in the code. Their technique for finding the
pbbs, however, is very different from the Recognizer's algorithmic parsing method. The code
is searched for certain distinctive features of a pbb to narrow down the search for matching
pbbs. A typical distinctive feature is the interchanging of two elements in an array which
hints that a sort is being performed. While a hypothesis is being verified, other outstanding
clues (called beacons) may be found which suggest the existence of other pbbs and therefore

A create, modify, and refine other hypotheses about the code. This system, like the Recognizer,
allows partial understanding. However, the Recognizer's technique is more algorithmic and
systematic.

* Lutz [21,22] is doing work very much related to that presented in this report. lie also uses
the Plan Calculus representation for programs. He has developed and implemented a graph
parsing algorithm which may be applied to parsing plans. The algorithm is based on the chart
parsing technique for strings, generalized to parsing flow graphs.

147

p -N
-.. 1.. - . .1

.p M'bk

Related Work using Attributed Graph Grammars

Graph grammars are used extensively in pattern analysis work. This section will discuss the
work of Bunke, which is particularly relevant to the techniques used by the Recognizer. It
will also describe related research in the area of analyzing control flow graphs using graph

grammars.

Rather than parsing, Bunke ([7,5,6]) uses context-sensitive graph grammars to transform

an input image, such as a circuit diagram, into a graph which describes it. The description

generated is in terms of characteristics of the graph, such as symbols, connections, and end-

points of connection lines. The grammars are used to interpret hand-drawn circuits and flow
charts.

Bunke's work is related to the Recognizer in two ways. The first is that graphs are
augmented with attributes. When a rule is applied in the derivation of a right-hand side graph
from a left-hand side graph, an applicability predicate is applied which expresses constraints

on the nodes and edges of the left-hand side. The applicability predicate is analogous to the

grammar rules' constraints on attributes in the Recognizer. Furthermore, the productions in
Bunke's system have attribute transfer functions as do the rules of the Recognizer. These
functions specify the values that the attributes of nodes and edges in the right-hand side
become when the right-hand side is embedded in the host graph.

The second way that Bunke's work is related to ours is that his grammar has special rules

which may be used to correct distortions in the input image which result from being drawn
by hand. For example, there are special productions in the grammar for closing gaps in lines

and for adding or removing lines or solder dots. These rules are analogous to the Recognizer's
transformation rules.

The grammar is programmed in that there is an explicitly defined order in which the
productions are to be applied. This is specified by the user in a control diagram. The use
of a programmable higher level mechanism has the advantage of being easier to control. On
the other hand, one advantage the Recognizer has over Bunke's is that the error correction

and parsing are synergistically combined. While parsing is going on, possible places that the

input graph could be seen in a different way are being looked for. If any of these places are

found, the section of graph in question can be transformed and parses that depend on seeing
the graph in a different way may complete successfully. Thus, there is only one parsing pass.

148

.K

d a

Farrow, Kennedy, and Zucconi ([11,18]) present a semi-structured flow graph grammar

which can be used to analyze the control flow graph of a restricted class of programs for

the purposes of compiler optimization of code. The grammar may be used to derive struc-
tured programs containing the standard control structures: sequential statements, conditional

statements, while-loops, repeat-until loops, and multiple-exit loops.

They also provide a parsing algorithm which runs in time linear in the size of the graph.
This algorithm is able to take advantage of the simplicity of the grammar.

Kennedy and Zucconi discuss how the semi-structured grammar may be augmented by

attributes to yield a number of applications in the area of global flow algorithms and graph-

based optimization algorithms.

149

'ft. '"' ., , . . > . / , -. '..- s .,. -.- '.
-

...- -. ,.-.. - .. . •" " .) -;'; " '5" '"", '\ - ,,-_'"" " "'

I'

Appendix A

The Constraint Sublanguage

1The constraint sublanguage is used to describe the constraints that must hold for a parse to be
valid. Some of the forms of this language are used to access attributes of the nodes, ports, and

a, edges of flow graphs. Others are used as predicates which test properties of these attributes.

In addition, there are functions which map a node or port which is in a grammar rule with
the node or port (respectively) in the graph parsed that matched with the rule's node or port.

These functions are:

" n> node-name - gives the node in the graph parsed which matched with the node having
the label node-name in the rhs of this rule.

" pl> port-spec - (where port-spec is an ordered pair of the form "(node-name port-label)"
which specifies a particular port on a node in the rule) gives the port in the graph parsed
which matched with the port specified by port-spec. If port-spec specifies a port on the

lhs node, then give the port in the graph parsed which connected to this lhs port when
the rhs was reduced to the lhs. (See for example the constraints on the rule for Absolute
Value.)

* p> port-spec - port-spec always specifies a port on the lhs node of the rule. This function
.. returns all of the ports in the input graph parsed which connected to this lhs port when

the rhs was reduced to the lhs.

" " nt-n> node-name - used only when node-name is the name of a nonterminal in the rhs

of the rule. This allows access to a nonterminal's attributes which were computed via

150

- - q-, %
", \ 4 .y ~ .i aa..~.. jL',~.a ~ ~

attribute-transfer.

" nt-p> port-spec - (where port-spec is as above) used only when the node on which the

port is located i- a nonterninal in the rule's rhs. This also allows access to the attributes

of a port on a nonterminal when the attributes were computed using attribute-transfer.

" input-name> port - used in generating documentation, this either gives the variable

name or constant type associated with port or generates an s-expression to describe how

data flow coming from this port was produced.

The Attribute Accessors

The following forms access attributes of structures within a flow graph.

* control-env node - gives the control environment of node.

: success-ce split-node - gives the success control environment of split-node.

-1 a failure-ce split-node - gives the failure control environment of split-node.

* innermost-loop ce - gives the loop control flow information of the innermost loop
containing the control environment cc. The loop information tells in which control

environment the loop feeds back and which control environment surrounds the loop.

* feedback-ce ce - finds the loop control flow information of the innermost loop containing
the control environment ce and then returns the control environment in which the control

of this loop feeds back to the beginning of the loop.

* outside-ce ce - finds the loop control flow information of the innermost loop containing
cc and then returns the control environment into which the control of this loop exits.

e termination-ce node - node is a nonterminal which represents a basic loop plan that
has been recognized in a program. This returns the control environment in which the

loop is terminated.

9 continuation-ce node - node is a nonterminal which represents a basic loop plan that

has been recognized in a program. This returns the control environment in which the

loop continues to be executed. This is the failure-ce of the exit test. It differs from

the feedback-ce of the loop in that there may be more than one continuation-env in a

151

_..,.,

loop (if there are more exits), while there is only one feedback-ce (which is the lowest

continuation-env).

* ce-from source-port sink-port - returns the control environment in which the edge from
source-port to sink-port carries data flow.

* ce-used-in port - returns the control environment in which the data coming into port
is being used. This is the control environment of the node containing port.

* function-info node - This returns information about the function that node represents.
This information includes the type of the function, which of the function's inputs is the

function closed with respect to, and which ports these inputs are getting data flow from.
(The inputs that the function is closed with respect to are receiving data flow from loop
constants.)

* predicate-info node - This is similar to function-info, but the function involved is a
predicate.

* init-value node - node is a nonterminal which represents a basic loop plan that has
been recognized in a program, e.g., Accumulation. This returns the initial value that

the loop plan takes as input.

0 closed-wrt function-info integer - function-info is the type and closed-wrt information
that a node has about the function (or predicate) it represents. Integer is a number of
an input to the function. Closed-wrt looks up this input in the function-info's closed-wrt
information and returns the port that is sending data flow to the input.

9 source-type source-port - gives the source type of source-port (e.g., NIL, 0, 2) if the
data from source-port is a constant.

Predicates
* The following forms are predicates that apply to attributes and structures contained in

flow graphs.

. ce-le cel ce2 - returns T if operations in the control environment cel are executed the
same number of times as or less often than operations in the control environment ce2.

152

04'4

;7" , P

% -

' * ce-it cel ce2 - returns T if operations in the control environment cel are executed less

often than operations in the control environment ce2.

" ce-equal cel ce2 - returns T if operations in the control environment cel are executed

the same number of times as operations in the control environment ce2.

" co-occur node1 node2 - returns T if nodel and node2 have the same control environ-

ment.

" feeds-back porti port2 - returns T if there is a feedback arc between portl and port2.

" in-a-loop node - returns T if node is in a loop's body.

" loop-constant port loop - returns T if data coming into port is coming from a "loop
constant" which means that the data doesn't change over the iterations of loop. (This

is the case when it is coming from some node outside loop.)

" any-source port - returns T if data coming from port is constant.

" partially-evaluated node - returns T if node represents an operation that is closed

with respect to any inputs.

" exit-predicate split-node - returns T if the success-ce of node is ce-le the outside-ce of
the innermost loop containing node's ce AND if the feedback-ce of this loop is ce-le the

failure-ce of node.

% * source? port source-type - returns T if port's source type is source-type.

1.5

;' .• -' i,' ' -* ,.. ' , .L., . ",.'' . ' ." ,--, - -- ? • .% d"- "- - = , " * ,p 1,53.i ,

M O V"

.r. Appendix B

The Grammar

This appendix contains the grammar which the Recognizer uses. It is created by manually

translating the clich6 library into rules.

Syntax of the Grammar Rules

Grammar rules are defined using defrule. The form of the rule is as follows:

Cdefrule (name-of-rule> (nam.-of-ls-node>

(rho-graph-spec>

(optional: (straight-through edge tpes>

:constraints (constraint, on graph matching rhs>

:att-trazisfer-specs (attribute transfer specs>

:doc <documentation string>

:implementation <documentation string>

transformation <NIL/ TRAISFORKATIOI-ONLY/ BOTH>

:grammars (list of graar names>])

e name-of-rule - a string made up of the node type of left hand side, followed by a" ,

4 followed by the name of the right hand side graph. For example, if a rule has the name

154

.1
"

~~~~~~~~~ %j- (4'~4 ~ - J 4.Wh V



"A>some-graph" then the rule has a nonterminal node of type "A" as its left hand side
and a graph named "some-graph" as its right hand side.

" name-of-lhs-node - the label of the left hand side node. It has a numeric suffix which
makes it unique, such as "Al", in case there ae other rules for the left hand side's node

type.

" rhs-graph-spec - made up of a graph name followed by any number of node labels or
edge specifications. The node labels specify nodes which are in the graph, but which are
not connected to any other node in the graph. (The edges which come into or out of any
of their ports are all either input or output edges of the graph.) The edge specifications
are in the form of a cons pair of port-specs. The first port-spec specifies the source port

*! of the edge and the second specifies the sink port. A port-spec is a list of two elements

* - the first is a node name and the second is a port label (which is a number), specifying
a particular port on the node. The port-spec may optionally contain a third element
which is the string "input" or "output", telling the type of the port.

" mapping - an association list of port-specs such as those that appear in edge-lists, with
the symbols "input" and "output" present as top-level sticky flags indicating the type
of port. This specifies the mapping between the left and right hand sides. The first

port-spec gives the left hand side node's port and the second port-spec gives the source
(or sink) port of the edge to which the port is mapped.

" st-thrus - specifies which edges run right through the graph without being connected
to any node. This is in the form of a list of cons pairs of port-specs in which the two
port-specs of each pair specify the lhs node's input and output port, respectively, that

are mapped to the straight-through edge.

" node-type-constraints - define the constraints on the type of the nodes in the rhs.
This is an association list in which names of nodes in the rhs graph are associated with
lambda expressions which place constraints on the type of nodes which can match the

node they are associated with.

" constraints - these are forms to evaluate in order to check constraints on the graphs
being matched with the rule's rhs. They are written in the constraint sublanguage

described above.

155



',1a att-transfer-specs - association list in which attributes of the lhs node are associated

' with forms which when evaluated give values to be assigned to the attributes. The

. .i 
-  

forms to be eva.luatedi are expressed usi ng the constraint subla nguage. In trtans formation

rules, the node in the transformed graph which is to receive the attribute values can be

-. specified by preceding the attribute and value by the name of the node. (If no node
" name is provided, the attribute values are defaultly assigned to the Ihs node of the rule.)

b.
°

.°,

* atdtasfrspc - association st ionswhich attesriutsn of tver noden rote

with formse which whn bevuted gfilie vlus tobasndt the ataiotribue.Th

'" "e implementation - implementation clues which give information about how a data
structure is implemented and which are used to generate additional documentation.

uleste transformation - may be one of three values: NIL (the default value) means the
rule is not to be used in transformations, i.e., it can only run forwards in the usual way;
TRANSFORMATION-ONLY means the rulecan only be used to expand the graph, i.e.,

it can only run backwards (in the Transform phase of the Recognizer which is separate
Sfrom the Parsing phase); BOTH means the rule can be used in parsing as well as in

r in o udtransforming the graph, i.e., it can run forwards or backwards.

* grammars - list of names of grammars which are to contain this rule.

I -C

4'. 'o

2 5

,,--

, " ' ' " "' % - % r ", - ". " ' -- , -, . . . .,



-w ..- _ - ---- - - - - - .- --------------

The Granintar Rules

Equality within an Epsilon

(def rule EWE>Equality-vithin-Epsilon EWES

(Equality-within-epa ilonS

((minusS 3) .(Abs-ValS 1))

((Abs-VaJS 2) .(lesspS 1)))

(input

((EWES 1) (minusS M)

((EWES 2) (minusS 2))

((EWES 3) (lesspS 2))

output

((EWES 4) ClesspS, 3))

doc

("determines whether -A and -A differ by less than -A."

(input-name> (p1> (EWES I))

(input-name> (p1> (EWES 2))

* (input-name> (p1> (EWES 3))))

grammars (the-grammar))

Absolute Value

(del rule Aba-Val>prin-abs Abs-Val32
Cprim-abs32 abs32)

(input

((Abo-Val32 1) (abs32 1)

output

((Abs-Val132 2) (abs32 2))

doc

("computes the absolute value of 'A"

(input-name> (p1> (Abs-Val32 1)))

gramars (the-grammar))

157

% ~ ~ -



(defrul. Abs-Val>Absol ute- Value Abe-Vail

* (Absolute- Value I

((positivel 2) (null-testl 1))

negatel)

(input

((Aba-Vail 1) (negatel )

((Abs-Vall 1) (positivel M)

output

((Abs-Vall 2) (negatel 2))

at-thrus

((Abs-Vail 1) (Abe-Vail 2))

constraints

(Cce-equal (ce-from (p1> (negatel 2)) (p1> (Aba-Vail 2))

(success-ce Cu> null-testi)))

*(ce-equal (ce-from (p1> (Abs-Vail 1)) (p1> (Aba-Vail 2)))

(failure-ce (n> null-testi))))

:doc

("computes the absolute value of -A,"

(input-name> (p1> (Abs-Vail I)

:grammars (the-grammar))

Sum of Squares

(def rule SOS>Sum-of-Squares SOSI

(Su-of-Squares I

((SqI 2) (plusl 2))

((SQ2 2) (plusi M)

(input
((SOS' 1) (SQ1 1))

((SOS1 2) (SQ2 1))

output
((S051 3) (plusl 3)))

:doc
("computes the sum of the squares of -A and -A."

(input-name> (p1> (SOSI M)

(input-name> (p1> (5051 2))))

graars (the-grammar))

158

%

re> .r~



* Square

(del rule SQ~use-timem SQ4
Cus.-times2 times2)

(input

CCSQ4 1) (times2 2))
((SQ 1) (times2 1))

output

((SQ4 2) (tim*92 3)))

doc

("computes the square of -V (input-name> (p1> (SQ4 O)))

grammars (the-grammar))

(del rule SQ>use-square SQ3
(use-square3 square3)

(input

((SQ3 1) (square3 M)

output

((5Q3 2) (square3 2))

doe

("computes the square of 'A." (input-name> (p1> (5Q3 1))))

:grammars (the-grammar))

Average

(del rule Average>avg Average3O

(avg3O
((plus3O 3) .(halve3O 1)))

(input

((Average3O 1) (plus3O M)

((Average3O 2) (plus3O 2))

output

((Averag.30 3) (halve3O 2))

:doc

("comnputes the average of -A and -V

(input-name> (p1> (Average3O 1))

(input-name> (pi> (Average3O 2))))

:graars (the-grammar))

159

@%I



U Generation

Cdefrule Gen>generation Gen2
(generation2

((any-f2 2 output)))

(input
((Gon2 1) (any-f2 1)))

:st-thrus

(((Gon2 1) (Gen2 2)))

node-type-constraints

C(any-f2 .(lambda (nt) T)))

:conlstrainlts
((feeds-back (p1> (any-f2 2)) (pI> (any-12 1)))

(in-a-loop (n> any-f2))

att-transf er-specs

((function-info (function-info (n> any-f2))

(control-eny (outside-ce (control-env (n> any-f2)))))

:doc

("generates the elements of -A by repeatedly applying

-&-A the function to the result of the preceding-

-&-A application of that function"

(input-name> (p1> (Gen2 1)))

(function-type (function-info (n> any-WM))
:grammars (the-grammar))

160



Map

Cdefrule Hap>mapping Map3
Cmapping3 any-f 3)
(input

*((Rap3 1) (any-f3 1))
output

((Kap3 2) (any-f3 2)))

node-type-constraints

((any-f3 .(lambda (nt) T)))

:constraints ((in-a-loop (n> any-f3))
:att-tranafer-specs

((function-info (function-info (n> any-f 3))
(control-env (outside-ce (control-env (n> any-f3)))))

:do
("applies the function -A to each element of the input stream"l
(node-type (a> any-f3))

grammars (the-grammar))

Test Predicate

(def rule Test-Prodicate>pred-null Test-PredicateS
(pred-nullS

((predicate5 2) .(null-testS 1)))
(input
((Test-Predicate5 1) .(predicateS 0))

node-type-constraints

((predicateS . (lambda (n) (predicate? n))))

att-transf er-specs

((predicate-info (function-info (n> predicateM)

(success-ce (failure-ce CD> null-testS)))
(failure-ce (success-ce (n> null-teatS)))
(control-env (control-env (n> null-testS))))

doc

("tests -A using the predicate -V

(input-name> (p1> (Test-PredicateS 1)))

(function-type (function-info (n> predicateS))))

grammars (the-grammar))

"% 
161

@4

U Q



Filter

(def rule Filter>filtering Filter4

Cf iltering4
Test-Predicate4)

(input

((Filterl 1) CTest-Predicate4 1))
:st-thrus

((Filter4 1) CFilter4 2))
constraints

((oop for p in (p> (Filter4 2))

for success-ce = (success-ce (nt-n> Test-Predicate)
unless (ce-i. (ce-used-in p) success-c.)

do (remove-output-mapping p '(Filter4 2))
(remove-st-thru-input-mappings p '(Filter4 1)

;the constraint holds if (Pilter4 1) and

;(Filter4 2) still have a mapping which means

;for at least one p, the ce-i. constraint held

finally (return (and (p> (Filter4 1))

(p> CFilter4 2)))))
~- ~ (in-a-loop (nt-n> Test-Predicate4M)

att-transf er-specs

((predicate-info (predicate-info (nt-n> Test-Predicate4)
(control-env (outside-ce (control-env (nt-n> Test-Predicate4))

doc

("filters the elements of the input stream using the predicate -V
(function-type (predicate-info (nt-n> Test-Predicate4)))

:grammars (the-grammar))

162

r 4
PI,~J~ ~~P ~*sj~.*~ ~.



Accumulation

(defrule Accum>accumulation AccumS

CaccumulationIS

((any-fe 3 output)))

(input

((Accum6 1) (any-fS 1))

((Accum6 2) (any-fe 2))
st-thrus

((AccumS 2) (AccumG 3))
node-type-constraints

(Cany-f6 (lambda Wn (binary-aggreg-function? n)))

constraints

((feeds-back (p1> (any-feS 3)) (p1> (Any-fe 2)

att-transf er-spece

((function-info (function-info Wn aay-fe)))

(control-env (outside-ce (control-envw (n> any-fe))

doc

("accumulates the values of the input stream usin~g the function -All

(function-type (function-into (n> any-fe))))
grammars (the-grammar))

163

N N4K. N



..

Truncate

Cdefrule Trunc~truncate Trunc7
(truncat.7

Test-Predicate?)

(input
((Trunc7 1) (Test-Predicate? M)

:st-thrus

(((Trunc7 1) (Trunc7 2)))

constraints

((oop for p in (p> (Trunc7 2))

for failure-ce z (failure-ce (nt-n) Test-Predicate?))
unless (ce-i. (ce-used-in p) failure-ce)

do (reuove-output-mapping p '(Trunc7 2))

Ei (remove-st-thru-input-mappings p '(Trunc? 1))

finally (return (and (p> (Trunc? 2))

(p> (Trunc7 1)))))
(exit-predicate (nt-n) Test-Predicate?)))

att-transf er-specs
((predicate-info (predicate-info (nt-n) Teat-Predicate?)))

(termination-ce (success-ce (nt-n) Test-Predicate7))
(continuation-ce (failure-ce (nt-n) Test-Predicate7))
(control-env (outside-ce (control-env (nt-n) Test-Predicate?)))))

:doc

("outputs the elements of the input stream up to but not including-
-fthe one that passes the predicate 'All

(function-type
(predicate-info (nt-n) Test-Predicat?)

:grammars (the-grammar))

164



Truncate Inclusive

(def rule Trunc-Inc>truncat*-inclusive Trunc-IncS
(truncate-inclusive8

Test-PredicateS)
(input

* ((Trunc-IncB 1) (Test-PredicateS M)

:st-thrus

(((Trunc-IncO 1) (Trunc-incS 2))
constraints

((oop for p in (p> (Trunc-Inc8 2))
unless (ce-is (control-env (nt-n> Test-Prodicate8))

(ce-used-in p))
do (remove-output-mapping p '(Trunc-IncO 2))

(remove-st-tru-mapping p '(Trunc-IncS M)
finally (return (and (p> (Trunc-IncS M)

(p (Trunc-IncO 2)))
(exit-predicate (nt-n> Test-PredicateS))

att-transfer-specs
((predicate-info (predicate-info (nt-n> Test-PredicateS))
(termination-ce (success-ce (nt-n> Test-Predicate8)))
(continuation-ce (failure-ce (nt-n> Test-PredicateS)))

(control-env (outside-ce (control-env (nt-n> Test-Predicates)))))
:doc

("outputs the elements of the input stream up to and including

-*the first one that passes the predicate -A"
(function-type (predicate-info (nt-n> Test-PredicateS))))

gramars (the-gr amme r))

165

AP'0

~,% %



* Co-Truncate

(def rule Co-Trunc>co-truncate Co-TruncB
(co-truncateg

Test-Predicateg)
* (input

((Co-Truncg 1) (Test-Predicateg 1))
sat-thris

((Co-Trunc9 2) (Co-Trunc9 3)))
constraints

* ((loop for p in (p> (Co-Trunc9 3))
for failure-c. = (failure-ce (nt-n> Test-Predicateg))

Sd
5

' unless (cs-i. (ce-used-in p) failure-c.)
'~ * do (remove-output-mapping p '(Co-Trunc9 3)

(remove-st-thru-input-mappings p '(Co-Trunc9 2))
finally (return (and (p> (Co-Trunc9 3))

(p> (Co-Truncg 2)))))
(exit-predicate (nt-n> Test-PredicateB)

att-transf er-specs
((predicate-info (predicate-info (nt-n> Test-Predicat*9)))

(termination-ce (success-ce (nt-n> Test-Predicate)
(continuation-ce (failure-ce (nt-n> Test-Predicateg)))
(control-env (outside-ce (control-env (nt-n> Test-Predicateg)))))

:doc
("outputs the elements of the second input stream up to but not -

-&including the one corresponding to the element of the first -

-&input stream that passes the predicate -V

(function-type (predicate-info (nt-n> Test-Predicate9))))
:grammars (the-grammar))

166

*I%



Co-Truncate Inclusive

(def rule Co-Trunc-Inc>co-truncate-inclusive Co-Trunc-InciO
(co-truncate-inclusivelO

Test-PredicatelO)

(input

((Co-Trunc-InclO 1) (Test-PredicatelO 1)))

:st-thrus

(((o-Trunc-InclO 2) (Co-Trunc-InclO 3)))

constraints
((oop for p in (p> (Co-Trunc-InclO 3))

unless (ce-i. (control-env (nt-n> Test-PredicatelO))

(ce-used-in p))

do (remove-output-mapping p I(Co-Trunc-InclO 3))
(remove-st-thru-mapping p '(Co-Trunc-InclO 2))

finally (return (and (p (Co-Trusc-InclO 2))

(p> (Co-Trunc-InclO 3)))))

(exit-predicate (nt-n> Test-PredicatelO)
att-transfer-specs
((predicate-info (predicate-info (nt-n> Test-PredicatelO))

(termination-ce (success-ce (nt-n> Test-PredicatelO))
(continuation-ce (failure-ce (nt-n) Test-Prtdicat*lO)))

(control-env (outside-ce (control-env (nt-n> Test-PredicatelO)))))

:doc

("outputs the elements of the second input stream up to and

-&including the one corresponding to the first element of the

-&first input stream that passes the predicate -V

(function-type (predicate-into (nt-n> Test-PredicatelO)

:grammars (the-grammar))

% 167

04



- --- --

Earliest

(defrule Earl>oarlient EarIll

(earliestil

Test-Predicatell)

(input

((arlil 1) (Test-Predicatell 1)))

st-thrum

(((Earlil 1) (Earl1I 2)))

constraints

((oop for p in (p> (Earll 2))

for outside-ce =

is 4  (outside-ce (control-env (nt-n> Test-Predicatell)))
unless (ce-ic (ce-umed-in p) outside-c.)

do (remove-output-mapping p '(EarlIl 2))
(remove-st-thru-input-mappings p '(Earlil 1)

finally (return (and (p> (Earlil 2))

4 (p> (Earill 1)))))

(exit-predicate (nt-n> Test-Predicatell)))

:att-transfer-spocs
((predicate-info (predicate-info (ut-n> Test-Predicatell)))

(termination-ce (success-ce (nt-n> Test-Predicatell)))
(continuation-ce (failure-ce (nt-v> Test-Predicatell))),

(control-env (outside-ce (control-env (nt-n> Test-Predicatell))

doc

("outputs the first element of the input sequence which passes the-
-&predicate -V

(function-type (predicate-info (at-n> Test-Predicatell))))
grammars (the-grammar))

*54*4

% *1



Co-Earliest

Cdefrule Co-Earl>co-earlient Co-Earl12

(co-earliest12

Test-Predicate12)

(input

* ((Co-Earl12 1) (Test-Predicat.12 M)

* :st-thrus

MCCo-Earl12 2) (Co-Earll2 3))
constraints

CMoop for p, in (p> (Co-Earl12 3))

for outside-c. =

(outside-ce (control-env (nt-n> Test-Predicats12)))

unless (ce-le (ce-used-in p) outside-c.)
* do Cremove-output-mapping p '(Co-Earl12 3))

(remove-st-thru-input-mappings p '(Co-Earll2 2))

finally (return (and (p> (Co-Earll2 3))
(p> (Co-Earl12 2)))))

(exit-predicate (nt-n> Test-Predicatel2)))

att-transf er-specs

C predicate-info (predicate-info (nt-nL> Test-Predicate12)))
(termination-ce (success-c. (nt-n> Test-Predicat*l2)))

* (continuation-ce (failure-ce (nt-n> Test-Predicate12)))

(control-env (outside-ce (control-env (nt-n> Test-Predicatei2)))

doc

("outputs the first element of the input sequence which passes the-

-&predicate -All

(function-type (predicate-info (nt-n> Test-Predicatsl2))))

:grammars (the-grammar))

169

%~ 00



-- -- - -- -

N SubList Enumeration

(detrul. S1.1>sublist-snum SLE14
(sublist-enumli

((GenIi 2) (Truncli 0))

(input

((51.114 1) (Gen14 M)

output

((51.14 2) (Truncli 2)))
constraints

((ca-occur (nt-n> Genii) (nt-n> Truncl)

9. (eq (function-type (function-into (nt-n) Genii)))

'cdr)
(eq (function-type (predicate-into (nt-n) Truncli))

,null))

att-transfer-specs

4. ((control-env (control-env (nt-n) Genii))))

dc

("enumerates the successive sublists ot -V

(input-name (p1> (51.114 1))))
grammars (the-grammar))

List Enumeration

(detrule LE~list-enum L11
(list-enumiS ((5.11 2) .(RapiS M)

(input

output

((1.11 2) (NapiS 2))

constraints

((co-occur (nt-n> 51.115 (nt-n) RapiS))

(eq (tunction-type (tunction-into (nt-n> NaplE)) 'car))
att-transter-specs
((control-env (control-env (nt-n> SLElS)

:doc

("enumerates the elements of -All (input-name> (p1> (1.115 1)))
:grammars (the-grammar))

170

-X~JN



List Reverse

The constant input of NIL as the init of the Accumulation is incorporated into the Ac-
cum node, yielding an Accum-from-constant node in the List-Reverse grammar rule. The
rule constrains the constant to be NIL. We use the transformation rule for Trans-Accum to
transform an instance of the Accumulation cliche in which the initial value is a constant to
an Accum-from-constant node.

(defrule List-Reverse>revlist List-ReverselS

(revlistl8

((LE18 2) . (Accum-from-constantl8 1)))
(input

((List-Reverse18 1) . (LEIS 1))

output

((List-ReverselS 2) . (Accum-fron-constantl8 2)))

:constraints

((co-occur (nt-n> LEIS) (n> Accum-from-constantlS))

(eq (nit-value (n> Accum-from-constant18))
'IlL-source)

(eq (function-type (acc=m-function-info
(a> Accum-from-constantl8)))

'cons)

;; constraint for the cliche Last:

(loop for p-out in (p> (Accum-from-constant18 2))

unless (ce-le (ce-used-in p-out)

(control-env (n> Accum-fromn-constant 18)))
do (remove-output-mapping

p-out '(Accun-frow-constantl8 2))

finally (return (p> (Accun-frou-constant8 2)))))

:att-transfer-specs

((control-env (control-env (nt-n> LEIB))))

:doc
("computes the reverse of the list 'A1

(input-name> (pl> (List-ReverselS 1))))

:gramars (the-grammar))

171

, , * . ., -.



List Length
The constant input of 0 to Count is incorporated into the Count, yielding another source

which is incorporated into the Co-Earliest. Therefore, List-Length uses a node called Co-E-
of- Cou nt- from- Zero which means a Co-Earliest of a Count starting with 0. This requires thle

use of the Trans- Co- E- Count transformation rule.

(def rule List-Length>11 List-Length22
(1122 C(Gen22 2) .(Co-E-of-Count-froz-Zero22 I))

(input
CCist-Length22 1) .(Gen22 1))

* output

(Cist-Length22 2) .(Co-E-of-Count-frow-Zero22 2))

constraints

((eq (function-type (function-info (nt-n> Gen22))) 'cdr)

0? (eq (function-type

(co-earl-predicate-info (n> Co-E-of-Count-from-Zero22)))

'4.? null)
(co-occur (nt-n> Gen22) (n> Co-E-of-Count-from-Zero22)))

att-tranufer-upecs

((control-env (control-env (nt-n> Gen22))))

doc
("computes the length of -V (input-name> (p1> (List-Length22 1)))

:grammars (the-grammar))

Count

- (def rule Count>cnt Countl9

(cntl9 Genl9)

'4.4(input ((CountI9 1) .(Genl9 1))

output ((Countl9 2) .(Genl9 2)))

constraints

4 ~ ~ ((eq (function-type (function (nt-n> GenlW)) 'one-plus))

:att-transfer-specs

((control-env Cccntrol-en'r (nt-n) Genl9M)

(mnit-value (source-type (pl> (Countig 1)))

doc

("generates a series of numbers starting with -"
'/- (input-name> (p1> (Countl9 MM))

~ 172

V.. .4- ! ,
'4-



Positive Sublist

(detrul. Pos-Subliot>pouitive-sublist Poo-Sublist23

Cpositive-sublist23

((1.23 2) .(Filter23 1))

(CFilter23 2) .(Accum-from-constant23 M)
( input

((Pon-Sublist23 1) (LE23 1)

output

((Poo-Sublist23 2) (Accunt-frou-conotant23 2))
constraints

((ceo-occur (nt-n> L023) (nt-n> Filter23))
(co-occur (n> Accu-fromt-constant23) (nt-n> Filtor23))
(eq (function-type (accum-function-info

(n> Accum-ro-contant23)))
'cons)

(eq (mit-value Wn Accu-from-constant23)) 'IL-source)
(eq (function-type (predicate-into (nt-n> Filtor23)))

'Positive))
att-transf er-spec.
((control-env (control-env (nt-n> 113)

:doc

6 ("returns a list of the positive elements of -A"
(input-names> (p1> (Pos-Sublist23 OM))

grammmars, (the-grammar))

173

V - ~ $~ !%



Sequential List Search

(def rule Seq-List-Search>list-search Seq-List-Search24

(list-search24
M(E24 2) .CEarl24 1)))

(input

CCSeq-List-Search24 1) CLE24 1)

output

CCSeq-List-Search24 2) CEarl24 2))
constraints

((co-occur (nt-n> LE24) (nt-n> Earl24)))

att-transf er-specs
C(control-env (control-env (nt-n> LE24)))
(success-ce (termination-ce (nt-n> Earl24))

(failure-ce (termination-ce (nt-n> LE24)))

- - (predicate-info (predicate-info (nt-n> Earl24))))

* :dc

("sequentially searches the elements of -A
-&for one that satisfies the test -V

(input-name> (p1> (Seq-List-Search24 1)))

(function-type (predicate-info (nt-n> Earl24))))
:grammars (the-grammar))

~174

%%

4174



rt w r w- 'tr ~ Xr ar~g W WU

Member

(def rule Member>lisp-member Member27

(lisp-member27

CCSLE27 2) (Nap27 1))

(CKap27 2) (Co-Earl27 1))

CCSLE27 2) CCo-Earl.27 2))

ignore27)

(input

(CMember27 1) (ignore27 1))

C(Member27 2) (SLE27 1))

Output

((Hember27 3) CCo-Earl27 3)))

constraints

*((co-occur (nt-n> SLE27) (nt-n> Nap27))

(co-occur (nt-n> SLE27) (nt-n> 'Co-Earl.27))

(eq (function-type (function-info (nt-n> Nap27))) 'car)

(eq (function-type (predicate-info (at-n> Co-Ear127))) 'eq)
(partially-evaluated (predicate-info (nt-n> Co-Earl.27)))

(eq (closed-irt (predicate-info (nt-nL> Co-Earl27)) 1)

(p1> (Meuber27 1))))

att-transf er-spec.
((control-env (control-env (nt-n> 1ap2T)))
(success-ce (termination-ce (nt-n> Co-Earl27)))
(failure-ce (termination-ce (nt-n> SLE2))))

doc
("uses EQ to determine if -A is a member of the list -All

(input-name> (p1> (Nembor27 1))

(input-name> (p1) CNember27 2))))

:grannais (the-grammar))

175

-. F,

k.

1. %



* ~ ~ ~ ~ ~ ~ ~ ~ ~ V .. ., r---rrrm-rrr rr fwN-

Set Member

(del rule Set-Hembership>ht-mem Set-Hembership33

(ht-mem33 Hash-Table-Member33)

(input

C(Set-Nembership33 1) (Hash-Table-Nember33 )

*(CSet-Hembership33 2) (Hash-Table-Kember33 2)))

* :att-transter-specs

C (control-env (control-env (nt-n> Hash-Table-Hember33)))
Csuccess-ce (success-c. (nt-n> Hash-Table-Hember33)))

(failure-ce (failure-ce (nt-n> Hash-Table-Kember33))))

doc

("determines whether or not -A is an element of the set -A."

(input-name> (p1> (Set-Hembership33 2)))

* Cinput-name> (p1> (Set-Hembership33 1))))

Y :implementation
(("-&The set is implemented as a Hash Table."))

grammars (the-grammar))

~ " Hash Table Member

* (del rule Hash-Table-Nember>hash-fetch-mem Hash-Table-Nember34
(hash-f etch-mezU

C(hash34 2) . (Fetch-Bucket34 2))
((Fetch-Bucket34 3) . (Bucket-Member34 1))

(input

((Hash-Table-Hember34 1) .(Fetch-Bucket34 1)

((Hash-Table-Xember34 2) .(hash34 1)
((Hash-Table-Nember34 2) (Bucket-Nember34 2)))

att-transfer-specs

((control-env (control-env (nt-n> Bucket-Nember34)))

(success-ce (success-ce (nt-n> Bucket-Xember34)))
(failure-ce (failure-ce (nt-n> Bucket-Kember34)

doc

("determines whether or not -A is an element of the Hash Table -A."

(input-name> (pi> (Hash-Table-Nember34 2)))

(input-name> (p1> (Hash-Table-Member34 1)))
grammars (the-grammar))

176

~* .%



Fetch Bucket

(dot rule Fetch-Bucket>lookup-index Fetch-Bucket35

(lookup-index35 aref35)

(input

(CFotch-Bucket3S 1) (aref3S1)

CCFetch-Ducket35 2) Caref35 2))

output

CCFetch-Bucket35 3) Caref35 3)))

att-tranfler-specs

((function-info (function-info Wii aref35)))

(control-env (control-env (n> aref 35))))

:doc

("looks up a bucket in -A using -A as an index"

(input-name> (p1> (Fetch-Bucket35 1)))

Cunput-nam:> (p1> CFetch-Bucket35 2))))
implementation
(("-&The HahTbeis implemented an an Array of

-&buckets, indexed by hash-code."))

grammars (the-grammar))

.4L



Bucket Member

(def rule Ducket-Nember>ord-ljst-mem Bucket-Member36
(ord-list-mem36

Ordered-List-Nember36)

(input

(CBucket-Nember36 1) COrdered-List-Hember36 1)
((Bucket-Member36 2) (Ordered-List-Kember36 2)))

att-transf er-specs

C (control-en, (control-env (nt-n> Ordered-List-Kember36)))
(success-ce (success-ce Cut-n> Order~d-List-Nember36)))
(failure-ce (failure-c. (nt-n> Ordered-List-Hember36))))

doc

("An Ordered-List-Nember is used to determin, whether or not
S-&-A in in the fetched bucket, -AV

(input-name> (p1> (Ducket-Rember36 2)))
(input-name> (p1> (Bucket-Nember36 1))))

implementation

(("-&The buckets are implemented as Ordered Lists.")
((if (eq (function-type

(predicate-info (nt-n> Ordered-List-Nember36)))
'string-gt)

"M~ey are ordered lexicographically.,,))
("MA~e elements in the buckets are -A."

(domain-of-f

(function-type

(predicate-info (nt-n> Ordered-List-Nember36)))))
:grammars (the-grammar))

17

r -- WI..IFI

4'A



Ordered List Member

(dot rule Ordered-List-Nember>le-trunc-earl Ordered-List-Member37

(le-trunc-earl37

((LE37 2) .(Trunc37 1))

(CTrunc37 2) .(Earl37 1))

ignore37

ignore38)

(input

(COrdered-List-Member37 1) (LE37 1))

(COrdered-List-Member37 2) Cignore37 1))

C(Ordered-List-Nember37 2) (ignore38 0))
:constraints

7I* (oocu u->LE7 u-> rn3)

((co-occur (nt-n> LE37) (nt-n> Trn37))

* (partially-evaluated (predicate-into (nt-n> Trunc37)))

Ceq (closed-urt (predicate-info (nt-n> Trunc37)) 2)

Cpl> COrdered-List-Member37 2)))
(eq (function-type (predicate-info (nt-n> Ear127))) 'equal)
(partially-evaluated (predicate-info (nt-n> Earl37)))
(eq (closed-wrt (predicate-info (nt-n> Earl37)) 2)

C' (p1> (Ordered-List-Kember37 2)))))
att-transfer-specs
((control-env (control-env (nt-nL> Trunc37)))

(predicate-info (predicate-info (nt-n> Trunc37)))

(success-ce (termination-ce (nt-n> Earl37)))

(failure-ce (ce-sm

(termination-ce (nt-n> LE37))
(termination-ce (nt-n> Trunc37)))))

doc

("determines whether or not -A is an element of the ordered list -V

(input-name> (p1> (Ordered-Liut-Member37 2)))

(input-name> (p1> (Ordered-List-Member37 1))))
:gramnars (the-grammar))

179

%



Sum

(dot rule Sum>accum-f ram-zero Sua39

Caccui-from-zero3g Accum-fro-constant39)
(input

((Sum39 1) (Accum-from-constant39 1)
Output

CCSum39 2) CAccum-from-constant3g 2))
constraints

C(eq Cinit-value (n> Accum-from-constant39)) 0)
(eq (function-type (accum-function-info (n> Accum-from-constant3g)))

'Plus))

V :att-transfer-specs
((control-env Ccontrol-env (n> Accum-from-constant3g))))

doc

("accumulates the sum of the successive values of -V

(input-name> (p1> (Sum39 1))))
grammars (the-grammar))

Sum Elements

(def rule Sum-Elements>sum-elems Sum-Elements4O
(sum-elems40 ((E40 2) .(Sum4O 1)

(input ((Sum-Elements40 1) (LE4O 1))
output ((Sum-Elements4O 2) (Sum4O 2)))

constraints

((co-occur (nt-n> LE4O) (nt-n> Sum4O))

;; constraint for Last:
(loop for p-out in (p> (Sum-Elements4O 2))

unless (ce-le (ce-used-in p-out) (control-env (nt-n> Sum4O)))

do (remove-output-mapping p-out '(Sum-Elements40 2))

finally (return (p> (Sum-Elements4O 2)))))

att-transf er-specs

((control-env (control-env (nt-n> LE4O))))

doc

("computes the sum of the elements of the list -All

(input-name> (pi> (Sum-Elements4O 1)
:grammars (the-grammar))

180



List Average

C def rule List-Average>list-avg List-Average4l
V (list-avg4l

((Sum-Elements41 2) Cdivide4i 1)

(Cist-Lengthll 2) Cdivide4l 2)))

(input

(Cist-Average4l 1) CSum-Elements~l1)

C(ist-Average4l 1) CList-Longth4l 1))

output

((List-Average41 2) Cdivide4l 3)))

:att-transf er-specs

C(control-env (control-env (n> divide4l))))

:doc

("computes the average of the elements in the list -V

(input-name> (p1> (List-Average41 1))))

grammars (the-grammar))

181



~r~rRrIrawIMFr..r-.- -- - - .-w -Wr -r , -~ -~ -r - -- r---

Vector Enumeration

Vector Enumeration of elements I to N, not including the Nth element.

C defrule VE-1-to-Nf>vec-enum-i-n VE-I-to-I
(vec-enuzu-i-n42

C(Count42 2) .(Trunc421)

C(Trunc42 2) .(Nap42 1)

ignore42 ignore43)

(input

((VE-I-to-142 1) Cignore42 1)

C(VE-I-to-142 2) .(Count42 1))

output

CCVE-I-to-14 4) . Cap42 2)))
constraints

((eq (function-type (predicate-into (nt-n> Trunc42)) 'gte)

(partially-evaluated (predicate-info (nt-n> Trunc42)))

(eq (closed-urt (predicate-info (nt-nL> Trunc42)) 2)

(p1> (VE-I-to-14 2)))

(eq (function-type (function-info (at-n> Nap42)) 'eref)

(partially-evaluated (function-info (nt-n> Map42)))

(eq (closed-wrt (function-info (nt-n> Nap42)) 1)

(p1> (Nap,42 1))))
(co-occur (nt-n> KapI42) (nt-nL> Trunc42))

(co-occur (nt-n> 1ap42) (nt-n> Count42)))

att-transf er-specs

((control-env (control-env (nt-n> hap42))))

:doc

("enumerates the elements of the vector -k from I -A up to 1= -All

(input-name> (pi> CVE-I-to-142 1)

(input-name> (p1> (VE-I-to-142 2)))

(input-name> (pi> (VE-I-to-142 3)

:implementat ion

(("-&The vector -A is implemented as an Array."~

(input-name> (p1> (VE-I-to-142 1)))))

grammars (the-grammar))

182

4T. !



01 W M

V.Elctor Enumerationi of the first N elemients of a vector

(def rule VE-f irst-N>VE-constant-U VE-first46

(VE-constant-145

VE-constant-to-245)

(input

((VE-first-NIS 1) (VE-constant-to-146 1)

CCVE-first-145 2) (VE-constant-to-146 2))

output
(CVE-first-145 3) CVE-constant-to-145 3)))

constraints

((eq (mit-value (n> YE-constant-to-N46)) 0))

att-transfer-opecs

(Ccontrol-env (control-env (n> VE-constant-to-145)

* :doc

("enumerates the first N = -A of the vector -V
ju Nor(input-name> (p1> CVE-first46 2)))

Cinput-name> (p1> (YE-f irst45i 1))))

:grammars (the-grammar))

183

" 4
1 R 1 'i 

%'



Transformation Rules

A transformation rule is specified by a pair of rules, one of which runs forward and the other of
which runs backward. The "forward-running" rule serves to find subgraphs in the input graph

which may be transformed. They replace the subgraph temporarily with an intermediate

node. This intermediate node is then expanded into the subgraph which is the result of

the transformation using a "backward-running" rule. For example, the forward-running rule

"Trans-Accum>find-accum" reduces to an intermediate node of type Trans-Accum. This

node is then expanded using the "backward-running" rule "Trans-accum>accum-constant".

The TRANSFORMATION option in the rule definition specifies whether a rule is to be run

- forward or backward. A value of "NIL" means the rule can only run forward, which is its
* normal direction in parsing. A value of "TRANSFORMATION-ONLY" means the rule can

only run backward to expand intermediate nodes. A value of "BOTH" means the rule can be

run in either direction.

Attributes must be transferred between the graphs involved in the transformation. This

is done by transferring attributes from the rhs of the "forward-running" rule to its lhs (as

usual) and then when the expansion is done, transferring these attributes to the expanded

graph. In order for the attributes to be assigned to the expanded graph, the nodes to which

*: they should be assigned must be specified. This is done in the attribute transfer specifications

by preceding the attribute and value in the specification by the name of the node which is to

receive the attribute.

184

1 ,,,.91,,.1 .! . 1 ,1 11 %....



The following pair of rules transform and instance of aji Accumulation which always re-

C~'ives a constant as its initial value (i.e., its second input) to an instance of Accum-frorn-

constant.

(def rule Trans-Accum~find-accum Trans-Accuml7

(find-accum17

Accum17)

(input

((Trans-Accunl 1) .(Accuznl7 1))

((Trans-Accum17 2) . Accum17 2))

output
((Trans-Accunl7 3) . Accual7 3)))

:constraints
((any-source (p1> Crrans-Accum17 2))))

att- transf er-speco
((accum-function-info (function-info (nt-n> Accuml7)))

(init-value (source-type (p1> CTrans-AccualT 2))))

(control-env Ccontrol-.nv (nt-n> Accuml7))))

:transformation NIL

grammars (the-grammar))

(def rule Trans-Accum>accum-constant Trans-Accu&16

(accum-constant1B

Accum-from-constant16

ignore 16)
(input

((Trans-Accuml6 1) . Accum-from-consatantl6 )

((Txans-Accum16 2) .(ignorel6 M)

output
(CTrans-Accum16 3) . Cccum-from-constantl6 2))

:att-transfer-specs

((Accum-from-constantl6 accum-function-info

(accum-function-info (nt-n) Trans-Accuul6)))

(Accum-from-constantl6 init-value (init-value (nt-n> Trans-Accuml6))

(Accui-from-constantl6 control-env (control-env (nt-n> Trans-Accuml6))))

transformation TRANSFORMATION-ONLY

:grammnars (the-grammar))

. :.J

185

?' 14 -



The following pair of riles specify a transformation of a node of input arity 2 (output arity

- .k,1) to one of input arity 1 as long as the first input is a loop constant.

(defrule Trans-to-Arity-One-Ig-First>find-l-c-to-first

Trans-to-Arity-One- Ig-First26

(find-i-c-to-f irst26

any-f 26)

(input

(CTrans-to-Arity-One-Ig-First26 1) .(any-f 26 M)

C(Trans-to-Arity-One-Ig-First26 2) .(any-f26 2))

output
(CTrahs-to-Arity-One-Ig-First26 3) . any-f26 3))

node-type-constraints

((any-f26 . (lambda (n) TM)

constraints

W ((in-a-loop (n> any-f 26))

(loop-constant (p1> (any-f26 1)

:att-transfer-specs
((control-env (control-env (n1> any-f2)))

(function-info

(create-function-info

(function-type (function-info (n> any-f26)))

(create-closed-wrt-alist

I (p1> (Trans-to-Arity-One-Ig-First26 1))

:transformation NIL

:grammars (the-grammar))

-186

-p. %



(def rule Tranu-to-Arity-One-Ig-First>one-input

Trais-to-Arity-One-Ig-First25i

Cone-input2S

one-input-f25

ignore 25)

(input

CCTrans-to-Arity-One-Ig-First2S 1) Cignore2S 1)

C(Tran~s-to-Arity-One-Ig-First2S 2) (one-input-M2 1))

output

CCTrans-to-Arity-One-Ig-First2S 3) Cone-input-M2 2)))

att-transf er-spec.

(Cone-input-M2 function-into

(function-into

(nt-n> Trans-to-Arity-On.-Ig-First25)))

Cone-input-f2 control-env

4 (control-any

(nt-n> Trans-to-Arity-On.-Ig-First25))))
transformation TRAISFOIIKATIOI-ONLY

grammars (the-grammar))

187



U. J

The following pair of rules specify a transformation of a node of input arity 2 (output arity 1) to

one of input arity 1 as long as the second input is a loop constant.

(def rule Trans-to-Arity-One-Ig-Second>fiad-l-c-to-second

Trans-to-Arity-One-Ig-Second2g

Cf ind-l-c-to-second2g

any-f 29)

(input
(CTrans-to-Arity-One-Ig-Second2g 1) (any-f29 1)

((Trans-to-Arity-One-Ig-Second29 2) (any-f 29 2))

output

C(Trans-to-Arity-One-Ig-Second2g 3) (any-f 29 3))

* :node-type-constraints

C(any-f29 .(lambda (n) T)))
:cntrit
((in-a-loop (n> any-f29))

(loop-constant (pi> (any-f29 2)

att-transfer-specs

((control-env (control-env Wu any-f29)))

(function-info

(create-function-info

(function-type (function-info (m> any-f29)))

(create-closed-urt-alist

2 (p1> (Trans-to-Arity-Ons-Ig-Second29 2))))))

transformation IL

:grammars (the-grammar))

188

0W . . . _

-A a755 Max



A.W - - - . T . I R

(def rule Trans-to-Arity-One-Ig-Second>one-input

Trans-to-Arity-One-Ig-Second28

(one-input28

ignore28

one-input-f 28)

%41 (input

CCTrans-to-Arity-One-Ig-Second28 1) Cone-input-f281)

CCTrans-to-Arity-One-Ig-Second28 2) Cignore28i)

output

(CTrans-to-Arity-On.-Ig-Second28 3) Cone-input-f28 2)))

9 :att-transfer-spece

C Cone-input-f2 function-into

(function-info

(nt-n> Trans-to-Arity-One-Ig-Second28)))

Cone-input-f28 control-env

( control-env

(nt-n> Trans-to-Arity-One-Ig-Second28))))

transformnat ion TRAISFODJ(ATION-OELY
:grammaru (the-grammar))

189

' ~~4 , J" .e, F



R-Ri0 421 AUTMTDRGm wcuIO
TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB L K WILLS
FEB 87 Al-TR-984 N88e14-85-K-8214

UNCLASSIFIED F/G t2/5 ML



-4 5

L7

ILO

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

4* ~ ~ ~ Wi . 0 ** 4 *



The next pair of rules transform an instance of a Count, whose starting number (first input) is 0
and which is being given as the second input to a Co-Earliest, into a single node which represents a
Co-Earliest being given a constant source (i.e. Count from Zero) as its second input.

(defrule Trans-Co--Count~id-co-.-ot-cnt Trans-Co-E-Count2l
(find-co-o-ot-cnt2l

((Count2l 2) . (Co-3mr121 2))

(input
((rans-Co-K-Count=l 1) .(Co-Earl2l M)
((Trans-Co-E-Count2l 2) (Count2l 1)

output
((Trans-Co-B-Count2l 3) .(Co-garl2l 3)))

constraints
4 ((co-occur (nt-a> Count2l) (nt-a> Co-Earl2l))

(eq (mit-value (nt-a> Count2l)) 0))

att-traasf er-specs

((control-.nv (control-env (nt-a> Co-3ar12l)))
(co-earl-predicate-info (predicate-into (at-a> Co-Harl2M)))

transformation NIL

graars (the-grammar))

(defrul. Trans-Co-3-Count>co-*-of-cnt Trans-Co-S-Count20

(co-s-of-cnt20 Co-E-of-Count-from-Zoro2O ignor*20)
(input

((Trans-Co-E-Count2O 1) (Co-E-of-Count-iroa-Zero2O 1))

Mtanis-Co-E-Count20 2) (ignore2O 1)
output

((Trans-Co-R-Count20 3) .(Co-S-ot-Count-from-Zoro2O 2))
:att-transer-pecs

M(o-E-of-Cout-from-Zero2O

co-earl-predicate-into
(co-earl-predicate-into (nt-a> Trans-Co-3-Count20))

(Co-S-of-Count-from-Zero20
control-env (control-env (nt-a> Trans-Co-E-Count2O))))

:transformation ?RAES7ORJIATION-OILY
:grammars (the-grammar))

190



The following pair of rules transform an instance of a Vector Enumeration of elements I up to N
where I is a constant to an instance of a Vector Enumeration of N whose initial value is the constant.

(defrule Trans-VE-I-to-Iflind-VB-1-to-1 Tzans-V--to-143
(find-VE-I-to-N43

VE-I-to-N43)

(input
((Trans-VE-I-to-N43 1) (VI-I-to-N43 1)
((Trans-VK-I-to-U43 2) (VE-1-to-343 2))
((Trans-VE-I-to-543 3) (VE-1-to-343 3))

output
((Trans-VE-I-to-N43 4) (V-I-to-943 4)))

constraints
((any-source (pi> (VE-1-to-N43 3))))

:att-transfr-specs
((mit-value (source-type (p1> (VE-1-to-143 3))))
(control-env (control-env (at-u) VE-I-to-143))))

:transformat ion NIL

:grammars (the-grammar))

(def rule Trana-VE-I-to-)V2-coastsatTas---t-4
(VE-constant44

fl-coastant-to-144

ignor*44)
(input

((Trans-VI-I-to-144 1) .('V-coastiat-to-544 1))
((Trans-VE-I-to-144 2) .(VE-constmat-to-N44 2))

((Traas-VR-I-to-344 3) .(ignore44 1))
output

((Trans-VE-1-to-344 4) .(V-constat-to-N44 3)))
:att-trals fe-specs
((V-constant-to-144 init-walue (mit-value Wu Trans-YE-X-to-N44))

(VE-constant-to-144 control-eaw (control-env (u) Traam-VE-I-to-144)

transformation TUISFORIITIOI-OULY

: grammars (the-grammar))

191



The following pair of rules transform an instance of a division by 2 into a "halve operation.

(def rule Trans-hSlvo~fiad-halve Trans-3mlve44
(1 ind-halve44

divide44)

(input

((Trans-1alve44 1) (divid*44 M)
((Traus-Ialve44 2) (dividoe4 2))

output

((Tans-Ealve44 3) (divid*44 W)
constraints

((source? (p1> (Tran-alv*4 2)) 2))

:att-trasf er-specs
((control-onv (control-env (a divide"4))))

transformation NIL

:gramars (the-graar))

(dot rule Trans-Ealwe>halve-ignore-eoastant Trans-falvi*46
(halve-ignore-comstant4l

k ignorO45)
(input

((Trans-Wave4S 1) .(halve4 1))

((Tans-Ialve4S 2) (ignore45 M)
output

M(rans-ftlve*4S 3) (halve4S 2)))
:att-transf er-specs

((hale46 control-OUT (control-OaT Wa Traas-Ialvoe4S)
transformation TRANSFORRATZON-OULT
graars (the-gramar))

192



These rules transform (GT x 0) to (POSITVE x).

(defrule Trans-OT-to-Posltive>fimd-gt
Trans-GT-to-Positiv*20

(tizad-gt20

(input

((Trans-GT-to-Positiv*20 1) (gt2O 1))
((Trans-GT-to-Positiv*20 2) (pt20 2))

output
((Trans-GT-to-Positive20 3) (gt20 3)))

:constraints

((source? (pl> (Traas-GT-to-Positiv*2O 2)) 0))

:att-transt er-specs
((control-env Ccoutrol-eav (a> gt20))))

:transformation NIL.
.3: gramars (the-gremmr))

(dot rule Trana-GT-to-Positive~positive-graph
Trans-GT-to-Positiv*21
(positive-graph2l
positive2l

ignor*2l)

(input
((Traas-GT-to-Positive2l 1) . Cpositive2l 1))
((Tans-GT-to-Positive2l 2) .(Ignowe2l M)

output

((Tans-GT-to-Positive2l 3) -(positiveft 2)))

:att-transf er-specs
((positive2l control-env

(control-env (nt-n) Trmas-GT-to-Positive2l))))

:transformation TlUSFOIIATIOI-OULT
: grammars (tho-grammar))

193



These rules transform (Plus x 1) to (One-Plus x).

(defrule Trsas-Plus-to-Oa.-Pl.usfiad-plus
Tz'an-Plus-to-Oa.-Plus2O
(find-plus2O

plus2O)
(input

M(rans-Plus-to-One-Plus2O 1) (plus2O M)
((rans-Plus-to-Oue-PlusO 2) (pls2O 2))

output
((Trans-Plus-to-0n*-Plus2O 3) (plus20 3)))

:constraints
((source? (p1O (Trans-Plus-to-Oae-Plus2O 2)) 1))

:att-transfer-spstco
((contzol-env (control-oay (a> plas2O))))

:transformation NIL
:graars (the-gramr))

(detrul. Tranz-Pius-to-Oae-Plus>oae-plua-graph
Trans-Plus-to-Oaeo-Plus2l
(one-pius-graph=i oze-plus2l igaore21)
(input

M(raas-Plus-to-Oze-Plus2l 1) . (one-plus2l 1))
((Tzaas-Plus-to-Oao-Plus2l 2) .(igaore2l 1))

output

((rans-Plus-to-Oae-Plus= 3) .(ons-plus2l 2)))
:att-transf er-specs

((on.-plus=l control-env
(control-sav (at-a> Trans-Plus-to-Oae-Plus=l)))

(oae-plus=l feeds-back
(goods-back (one-yl.us21 2) 'oue-plus=l 1))))

:trasfomtion TIMNSOIRATION-OULY
:Srasmrs (the-graimr))

194



Bibliography

[1] Adam, Anne, and Jean-Pierre Laurent, "LAURA, A System to Debug Student

Programs", Artificiai Intelligence, 15 (1980), pp. 75-122.

[2] Brooks, Ruven, "Towards a Theory of the Comprehension of Computer Programs",

International Journal of Man-Machine Studies, 18 (1983), pp. 543-554.

[3] Brotsky, Daniel C., "Program Understanding Through Cliche Recognition",

(M.S. Proposal), MIT/Al/WP-224, December, 1981.

[4] Brotsky, Daniel C., "An Algorithm for Parsing Flow Graphs", (M.S. Thesis),

MlT/AI/TR-704, March, 1984.

[5] Bunke, Horst, "Attributed Programmed Graph Grammars and Their Application

to Schematic Diagram Interpretation", IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. PAMI-4, No. 6, Nov., 1982.

[6] Bunke, Horst, "Graph Grammars as a Generative Tool in Image Understanding"

in Ehrig, H., Nagl, M., Rozenberg, (Eds.): Proceedings 2nd Int. Workshop on

Graph Grammars and their Application to Computer Science, Haus Ohrbeck,

Germany, Oct. 4-8, 1982.

[7] Bunke, Horst, "Programmed Graph Grammars" in Lecture Notes in Computer

Science, Vol. 56, 1977, pp. 155-166.

[8] Cyphers, D. Scott, "Automated Program Description", (B.S. Thesis), Working
Paper 237, August, 1982.

(9] Cyphers, D. Scott, "Programming Cliches and Cliche Extraction", Working Paper

223, February, 1982.

195

lu l1



[10] Earley, J., "An Efficient Context-Free Parsing Algorithm," (Ph.D. Thesis),

Computer Science Department, Carnegie-Mellon University, 1968.

[11] Farrow, R., K. Kennedy, and L. Zucconi, "Graph Grammars and Global
Program Data Flow Analysis", proceedings 17th Annual IEEE Symp. on

Foundations of Computer Science, Houston, Texas, 1976.

[12] Faust, Gregory G., "Semiautomatic Translation of COBOL into HIBOL",

(M.S. Thesis), MIT/LCS/TR-256, February, 1981.

[13] Fickas, Stephen and Ruven Brooks, "Recognition in a Program Understanding

System", IJCAI-79, Tokyo, 1979, pp. 266-268.

[14] Genesereth, Michael R., "The Role of Plans in Intelligent Teaching Systems",
Stanford, in D. Sleeman and J.S. Brown (Eds.): Intelligent Tutoring Systems,

New York: Academic Press, 1982.

[15] Hall, Robert J., "On Using Analogy to Learn Design Grammar Rules",

(M.S. Thesis), MIT/Al 1985.

[16] Johnson, W. Lewis, and Elliot Soloway, "PROUST: Knowledge-Based Program

Understanding", IEEE Seventh Conference on Software Engineering, Orlando,
Florida, 1984, pp. 369-386.

[17] Johnson, W. Lewis, and Elliot Soloway, "Intention-Based Diagnosis of

Programming Errors", proceedings AAAI-84, Austin, Texas, August, 1984,

pp. 162-168.

[18] Kennedy, Ken and Linda Zucconi, "Applications of a Graph Grammar for

Program Control Flow Analysis", proceedings 4th Principles of Programming

Languages, Santa Monica, 1977, pp. 72-85.

[19] Laubsch, Joachim, and Marc Eisenstadt, "Domain Specific Debugging Aids for

Novice Programmers", The Open University, IJCAI, Canada, 1981, pp. 964-969.

[201 Lukey, F. J., "Understanding and Debugging Programs", International

Journal of Man-Machine Studies, 12 (1980), pp. 189-202.

196

rI



[21] Lutz, Rudi, "Diagram Parsing - A New Technique for Artificial Intelligence",

University of Sussex, CSRP.054, 1986.

[22] Lutz, Rudi, "Program Debugging by Near-miss Recognition and Symbolic

Evaluation", University of Sussex, CSRP.044, 1984.

[23] Miller, Mark L., "A Structured Planning and Debugging Environment for

Elementary Programming", in D. Sleeman and J.S. Brown (Eds.):

Intelligent Tutoring Systems, New York: Academic Press, 1982.

[241 Muchnick, Steven, and Neil Jones, "Program Flow Analysis: Theory and

Applications", Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1981.

[25] Murray, William R., "Automatic Program Debugging for Intelligent Tutoring

Systems", The University of Texas at Austin, AI-TR86-27, June, 1986.

[26] Murray, William R., "Heuristic and Formal Methods in Automatic Program

Debugging", proceedings IJCAI, LA, Calif., August, 1985.

[27] Rich, Charles, "A Formal Representation for Plans in the Programmer's

Apprentice", proceedings IJCAI-81, August, 1981.

[28] Rich, Charles, "Inspection Methods in Programming", (Ph.D. Thesis),

MIT/AI/TR-604, June, 1981.

[29] Rich, Charles, "Knowledge Representation Languages and Predicate Calculus:

How to Have Your Cake and Eat It Too", Proceedings AAAI-82, August, 1982.

[30] Rich, Charles, "The Layered Architecture of a System for Reasoning about

Programs", proceedings IJCAI-85, August, 1985.

[31] Rich, Charles, and Howard E. Shrobe, "Initial Report on a LISP

Programmer's Apprentice", (M.S. Thesis), MIT/AI/TR-354, December, 1976.

[32] Rich, Charles, Richard C. Waters, and Howard E. Shrobe, "Overview of the

Programmer's Apprentice", Proceedings of IJCAI-79, August, 1979.

[33] Rich, Charles and Richard C. Waters, "Abstraction, Inspection, and

Debugging in Programming", MIT Al Memo No. 634, June, 1981.

197

N 10HM
NO



[34] Ruth, Gregory R., "Analysis of Algorithm Implementations", (Ph.D. Thesis),
MAC-TR-130, May, 1974.

[35] Shapiro, Daniel G., "Sniffer. a System that Understands Bugs", (M.S. Thesis),
MIT Al Memo No. 638, June, 1981.

[36] Shrobe, Howard E., Richard C. Waters, and Gerald J. Sussman,
"A Hypothetical Monologue Illustrating the Knowledge Underlying Program
Analysis", A.I. Memo 507, January, 1979.

[37] Shrobe, Howard E., "Dependency Directed Reasoning in the Analysis of
Programs Which Modify Complex Data Structures", Proceedings of IJCAI,
August, 1979.

[38] Soloway, Elliot, Eric Rubin, Beverly Woolf, Jeffrey Bonar, and W. Lewis Johnson,
"MENO-II: An AI-Based Programming Tutor", Yale RR-258, December, 1982.

[39] Steele, Guy L., Jr., Common Lisp, Digital Press, 1984.

[40] Vessey, Iris, "Expertise in Debugging Computer Programs: A Process Analysis",
International Journal of Man-Machine Studies, 23 (1985), pp. 459-494.

[41] Waters, Richard C., "Automatic Analysis of the Logical Structure of

Programs", (Ph.D. Thesis), MIT/AI/TR-492, December, 1978.

[42] Waters, Richard C., "A Method for Analyzing Loop Programs", IEEE

Transactions on Software Engineering, Vol. SE-5, No. 3, May, 1979.

[43] Waters, Richard C., "Program Translation via Analysis and Reimplementation",

submitted to IEEE Transactions on Software Engineering, October, 1985.

[44] Waters, Richard C., "KBEmacs: A Step Toward the Programmer's Apprentice",

MIT/AI/TR-753, May, 1985.

[45] Waters, Richard C., "The Programmer's Apprentice: A Session with KBEmacs",

IEEE Transactions on Software Engineering, Vol. SE-11, No. 12, October, 1985.

198



[46] Weiser, Mark, and Joan Shertz, "Programming Problem Representation in Novice

and Expert Programmers", International Journal of Man-Machine Studies,

19 (1983), pp. 391-398.

[47] Winston, Patrick H., and Berthold K. P. Horn, LISP, Reading, MA:
Addison-Wesley Publishing Company, 1981.

199



~w4b

FS

-.-. .-- -J 0*' c -~ 0


